المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر


Fermat Prime  
  
654   05:51 مساءً   date: 22-9-2020
Author : Ribenboim, P
Book or Source : The New Book of Prime Number Records. New York: Springer-Verlag, 1996.
Page and Part : ...


Read More
Date: 21-10-2020 608
Date: 13-1-2021 912
Date: 29-12-2019 910

Fermat Prime

A Fermat prime is a Fermat number F_n=2^(2^n)+1 that is prime. Fermat primes are therefore near-square primes.

Fermat conjectured in 1650 that every Fermat number is prime and Eisenstein in 1844 proposed as a problem the proof that there are an infinite number of Fermat primes (Ribenboim 1996, p. 88). At present, however, the only Fermat numbers F_n for n>=5 for which primality or compositeness has been established are all composite.

The only known Fermat primes are

F_0 = 3

(1)

F_1 = 5

(2)

F_2 = 17

(3)

F_3 = 257

(4)

F_4 = 65537

(5)

(OEIS A019434), and it seems unlikely that any more will be found using current computational methods and hardware. It follows that 2^n+1 is prime for the special case n=0 together with the Fermat prime indices, giving the sequence 2, 3, 5, 17, 257, and 65537 (OEIS A092506).

2^(2^n)+1 is a Fermat prime if and only if the period length of 1/(2^(2^n)+1) is equal to 2^(2^n). In other words, Fermat primes are full reptend primes.


REFERENCES:

Ribenboim, P. The New Book of Prime Number Records. New York: Springer-Verlag, 1996.

Robinson, R. M. "Mersenne and Fermat Numbers." Proc. Amer. Math. Soc. 5, 842-846, 1954.

Sloane, N. J. A. Sequences A019434 and A092506 in "The On-Line Encyclopedia of Integer Sequences."




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.