المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر

إعراض المشهور عن الظهور
9-9-2016
language death
2023-09-30
العق عن الحسانان عند الولادة
4-03-2015
متطلبات الجودة
28-6-2016
The Polymerase Chain Reaction
27-12-2019
حث الامام الباقر على ترك غرور الدنيا وتذكر الموت
21-8-2016

Jackson-Slater Identity  
  
2110   07:19 مساءً   date: 23-8-2019
Author : Sloane, N. J. A
Book or Source : Sequence A069910 in "The On-Line Encyclopedia of Integer Sequences."
Page and Part : ...


Read More
Date: 8-8-2019 3118
Date: 25-4-2018 2214
Date: 2-10-2019 1471

Jackson-Slater Identity

 

The Jackson-Slater identity is the q-series identity of Rogers-Ramanujan-type given by

sum_(k=0)^(infty)(q^(2k^2))/((q)_(2k)) = ((q,q^7,q^8;q^8)_infty(q^6,q^(10);q^(16))_infty)/((q)_infty)

(1)

= (f(q^3,q^5))/(f(-q^2))

(2)

= 1+q^2+q^3+2q^4+2q^5+3q^6+3q^6+5q^7+...

(3)

(OEIS A069910; Leininger and Milne 1999), where (a^i,b^j,...,a^p;q)_infty is extended q-series notation and f(a,b) is a Ramanujan theta function.

The identity in question was actually first published by Jackson (1928) in slightly disguised form as the fifth equation on page 170 in his paper, though this early appearance of this identity is not well-known. It became widely known as equation 39 (and 83) in the collection of identities due to Slater (1952).


REFERENCES:

Jackson, F. H. "Examples of a Generalization of Euler's Transformation for Power Series." Messenger Math. 57, 169-187, 1928.

Leininger, V. E. and Milne, S. C. "Some New Infinite Families of eta-Function Identities." Methods Appl. Anal. 6, 225-248, 1999.

Mc Laughlin, J.; Sills, A. V.; and Zimmer, P. "Dynamic Survey DS15: Rogers-Ramanujan-Slater Type Identities." Electronic J. Combinatorics, DS15, 1-59, May 31, 2008. http://www.combinatorics.org/Surveys/ds15.pdf.

Slater, L. J. "Further Identities of the Rogers-Ramanujan Type." Proc. London Math. Soc. Ser. 2 54, 147-167, 1952.

Sloane, N. J. A. Sequence A069910 in "The On-Line Encyclopedia of Integer Sequences."




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.