Read More
Date: 23-8-2018
1531
Date: 16-4-2019
3504
Date: 20-7-2019
1543
|
Let be a step function with the jump
(1) |
at , 1, ..., , where , and . Then the Krawtchouk polynomial is defined by
(2) |
|||
(3) |
|||
(4) |
for , 1, ..., . The first few Krawtchouk polynomials are
(5) |
|||
(6) |
|||
(7) |
Koekoek and Swarttouw (1998) define the Krawtchouk polynomial without the leading coefficient as
(8) |
The Krawtchouk polynomials have weighting function
(9) |
where is the gamma function, recurrence relation
(10) |
and squared norm
(11) |
It has the limit
(12) |
where is a Hermite polynomial.
The Krawtchouk polynomials are a special case of the Meixner polynomials of the first kind.
REFERENCES:
Koekoek, R. and Swarttouw, R. F. "Krawtchouk." §1.10 in The Askey-Scheme of Hypergeometric Orthogonal Polynomials and its -Analogue. Delft, Netherlands: Technische Universiteit Delft, Faculty of Technical Mathematics and Informatics Report 98-17, pp. 46-47, 1998.
Koepf, W. Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities. Braunschweig, Germany: Vieweg, p. 115, 1998.
Nikiforov, A. F.; Uvarov, V. B.; and Suslov, S. S. Classical Orthogonal Polynomials of a Discrete Variable. New York: Springer-Verlag, 1992.
Schrijver, A. "A Comparison of the Delsarte and Lovász Bounds." IEEE Trans. Inform. Th. 25, 425-429, 1979.
Szegö, G. Orthogonal Polynomials, 4th ed. Providence, RI: Amer. Math. Soc., pp. 35-37, 1975.
Zelenkov, V. "Krawtchouk Polynomials Home Page." http://www.geocities.com/orthpol/.
|
|
دراسة يابانية لتقليل مخاطر أمراض المواليد منخفضي الوزن
|
|
|
|
|
اكتشاف أكبر مرجان في العالم قبالة سواحل جزر سليمان
|
|
|
|
|
المجمع العلمي ينظّم ندوة حوارية حول مفهوم العولمة الرقمية في بابل
|
|
|