Read More
Date: 3-6-2019
![]()
Date: 11-6-2019
![]()
Date: 25-4-2018
![]() |
Let be a step function with the jump
![]() |
(1) |
at , 1, ...,
, where
, and
. Then the Krawtchouk polynomial is defined by
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
for , 1, ...,
. The first few Krawtchouk polynomials are
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
Koekoek and Swarttouw (1998) define the Krawtchouk polynomial without the leading coefficient as
![]() |
(8) |
The Krawtchouk polynomials have weighting function
![]() |
(9) |
where is the gamma function, recurrence relation
![]() |
(10) |
and squared norm
![]() |
(11) |
It has the limit
![]() |
(12) |
where is a Hermite polynomial.
The Krawtchouk polynomials are a special case of the Meixner polynomials of the first kind.
REFERENCES:
Koekoek, R. and Swarttouw, R. F. "Krawtchouk." §1.10 in The Askey-Scheme of Hypergeometric Orthogonal Polynomials and its -Analogue. Delft, Netherlands: Technische Universiteit Delft, Faculty of Technical Mathematics and Informatics Report 98-17, pp. 46-47, 1998.
Koepf, W. Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities. Braunschweig, Germany: Vieweg, p. 115, 1998.
Nikiforov, A. F.; Uvarov, V. B.; and Suslov, S. S. Classical Orthogonal Polynomials of a Discrete Variable. New York: Springer-Verlag, 1992.
Schrijver, A. "A Comparison of the Delsarte and Lovász Bounds." IEEE Trans. Inform. Th. 25, 425-429, 1979.
Szegö, G. Orthogonal Polynomials, 4th ed. Providence, RI: Amer. Math. Soc., pp. 35-37, 1975.
Zelenkov, V. "Krawtchouk Polynomials Home Page." http://www.geocities.com/orthpol/.
|
|
منها نحت القوام.. ازدياد إقبال الرجال على عمليات التجميل
|
|
|
|
|
دراسة: الذكاء الاصطناعي يتفوق على البشر في مراقبة القلب
|
|
|
|
|
هيئة الصحة والتعليم الطبي في العتبة الحسينية تحقق تقدما بارزا في تدريب الكوادر الطبية في العراق
|
|
|