Read More
Date: 20-8-2018
![]()
Date: 30-6-2019
![]()
Date: 5-9-2019
![]() |
Binet's first formula for , where
is a gamma function, is given by
![]() |
for (Erdélyi et al. 1981, p. 21; Whittaker and Watson 1990, p. 249).
Binet's second formula is
![]() |
for (Erdélyi et al. 1981, p. 22; Whittaker and Watson 1990, pp. 250-251).
REFERENCES:
Erdélyi, A.; Magnus, W.; Oberhettinger, F.; and Tricomi, F. G. Higher Transcendental Functions, Vol. 1. New York: Krieger, 1981.
Whittaker, E. T. and Watson, G. N. "Binet's First Expansion for in Terms of an Infinite Integral" and "Binet's Second Expression for
in Terms of an Infinite Integral." §12.31 and 12.32 in A Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University Press, pp. 248-251, 1990.
|
|
"إنقاص الوزن".. مشروب تقليدي قد يتفوق على حقن "أوزيمبيك"
|
|
|
|
|
الصين تحقق اختراقا بطائرة مسيرة مزودة بالذكاء الاصطناعي
|
|
|
|
|
مكتب السيد السيستاني يعزي أهالي الأحساء بوفاة العلامة الشيخ جواد الدندن
|
|
|