المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
{افان مات او قتل انقلبتم على اعقابكم}
2024-11-24
العبرة من السابقين
2024-11-24
تدارك الذنوب
2024-11-24
الإصرار على الذنب
2024-11-24
معنى قوله تعالى زين للناس حب الشهوات من النساء
2024-11-24
مسألتان في طلب المغفرة من الله
2024-11-24

الكميات القياسية
19-8-2019
عملية إنتاج المياه النقية - مرحلة المزج
8-3-2021
window (n.)
2023-12-07
من تعقيبات صلاة الفجر / الاستغفار (70) مرّة وقراءة خمسين آية.
2023-06-04
طرق إبرام العقد الإداري
1-9-2019
المشتق
7-8-2016

Quintuple Product Identity  
  
2695   02:15 صباحاً   date: 23-4-2019
Author : Bhargava, S.
Book or Source : "A Simple Proof of the Quintuple Product Identity." J. Indian Math. Soc. 61
Page and Part : ...


Read More
Date: 22-5-2019 1490
Date: 21-9-2019 1178
Date: 30-6-2019 1877

Quintuple Product Identity

 

The quintuple product identity, also called the Watson quintuple product identity, states

 product_(n=1)^infty(1-q^n)(1-zq^n)(1-z^(-1)q^(n-1))(1-z^2q^(2n-1))(1-z^(-2)q^(2n-1)) 
=sum_(m=-infty)^infty(z^(3m)-z^(-3m-1))q^(m(3m+1)/2).

(1)

It can also be written

 product_(n=1)^infty(1-q^(2n))(1-q^(2n-1)z)(1-q^(2n-1)z^(-1))(1-q^(4n-4)z^2)(1-q^(4n-4)z^(-2)) 
=sum_(n=-infty)^inftyq^(3n^2-2n)[(z^(3n)+z^(-3n))-(z^(3n-2)+z^(-(3n-2)))]

(2)

or

 sum_(k=-infty)^infty(-1)^kq^((3k^2-k)/2)z^(3k)(1+zq^k) 
=product_(j=1)^infty(1-q^j)(1+z^(-1)q^j)(1+zq^(j-1))(1+z^(-2)q^(2j-1))(1+z^2q^(2j-1)).

(3)

The quintuple product identity can be written in q-series notation as

 sum_(k=-infty)^infty(-1)^kq^(k(3k-1)/2)z^(3k)(1+zq^k)=(1,-z,-q/z;q)_infty(qz^2,q/z^2;q^2)_infty,

(4)

where 0<|q|<1 and z!=0 (Gasper and Rahman 1990, p. 134; Leininger and Milne 1999).

Using the notation of the Ramanujan theta function (Berndt 1985, p. 83),

 f(B^3q,q^5/B^3)-B^2f(q/B^3,B^3q^5) 
 =f(-q^2)(f(-B^2,-q^2/B^2))/(f(Bq,q/B)).

(5)

 


REFERENCES:

Berndt, B. C. Ramanujan's Notebooks, Part III. New York:Springer-Verlag, 1985.

Bhargava, S. "A Simple Proof of the Quintuple Product Identity." J. Indian Math. Soc. 61, 226-228, 1995.

Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, pp. 306-309, 1987.

Carlitz, L. and Subbarao, M. V. "A Simple Proof of the Quintuple Product Identity." Proc. Amer. Math. Soc. 32, 42-44, 1972.

Gasper, G. and Rahman, M. Basic Hypergeometric Series. Cambridge, England: Cambridge University Press, 1990.

Leininger, V. E. and Milne, S. C. "Some New Infinite Families of eta-Function Identities." Methods Appl. Anal. 6, 225-248, 1999b.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.