Read More
Date: 18-10-2018
![]()
Date: 24-10-2018
![]()
Date: 22-11-2018
![]() |
If is analytic in some simply connected region
, then
![]() |
(1) |
for any closed contour completely contained in
. Writing
as
![]() |
(2) |
and as
![]() |
(3) |
then gives
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
From Green's theorem,
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
so (◇) becomes
![]() |
(8) |
But the Cauchy-Riemann equations require that
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
![]() |
(10) |
so
![]() |
(11) |
Q.E.D.
For a multiply connected region,
![]() |
(12) |
REFERENCES:
Arfken, G. "Cauchy's Integral Theorem." §6.3 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 365-371, 1985.
Kaplan, W. "Integrals of Analytic Functions. Cauchy Integral Theorem." §9.8 in Advanced Calculus, 4th ed. Reading, MA: Addison-Wesley, pp. 594-598, 1991.
Knopp, K. "Cauchy's Integral Theorem." Ch. 4 in Theory of Functions Parts I and II, Two Volumes Bound as One, Part I. New York: Dover, pp. 47-60, 1996.
Krantz, S. G. "The Cauchy Integral Theorem and Formula." §2.3 in Handbook of Complex Variables. Boston, MA: Birkhäuser, pp. 26-29, 1999.
Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 363-367, 1953.
Woods, F. S. "Integral of a Complex Function." §145 in Advanced Calculus: A Course Arranged with Special Reference to the Needs of Students of Applied Mathematics. Boston, MA: Ginn, pp. 351-352, 1926.
|
|
4 أسباب تجعلك تضيف الزنجبيل إلى طعامك.. تعرف عليها
|
|
|
|
|
أكبر محطة للطاقة الكهرومائية في بريطانيا تستعد للانطلاق
|
|
|
|
|
أصواتٌ قرآنية واعدة .. أكثر من 80 برعماً يشارك في المحفل القرآني الرمضاني بالصحن الحيدري الشريف
|
|
|