المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
احكام الاموات
2025-04-14
الأمور التي تحرم على المجنب
2025-04-14
الاغسال المندوبة
2025-04-14
الاستنجاء
2025-04-14
الاحداث التي توجب الغسل او الوضوء
2025-04-14
اقسام الطهارة
2025-04-14


Covering Maps and the Monodromy Theorem-Path Lifting and the Monodromy Theorem  
  
1632   11:17 صباحاً   date: 21-6-2017
Author : David R. Wilkins
Book or Source : Algebraic Topology
Page and Part : ...


Read More
Date: 4-8-2021 1589
Date: 4-7-2017 1645
Date: 1-6-2021 1657

Let p: X˜ → X be a covering map over a topological space X. Let Z be a topological space, and let f:Z → X be a continuous map from Z to X. A continuous map f˜:Z → X˜ is said to be a lift of the map f:Z → X if and only if p ◦f˜ = f. We shall prove various results concerning the existence and uniqueness of such lifts.

Proposition 1.2 Let p: X˜ → X be a covering map, let Z be a connected topological space, and let g:Z → X˜ and h:Z → X˜ be continuous maps.

Suppose that p ◦ g = p ◦ h and that g(z) = h(z) for some z ∈ Z. Then g = h.

 Proof Let Z0 = {z ∈ Z : g(z) = h(z)}. Note that Z0 is non-empty, by hypothesis. We show that Z0 is both open and closed in Z.

Let z be a point of Z. There exists an open set U in X containing the point p(g(z)) which is evenly covered by the covering map p. Then p−1 (U)  is a disjoint union of open sets, each of which is mapped homeomorphically onto U by the covering map p. One of these open sets contains g(z); let this set be denoted by U˜. Also one of these open sets contains h(z); let this open set be denoted by V˜ . Let Nz = g−1 (U˜) ∩ h−1 (V˜ ). Then Nz is an open set in Z containing z.

Consider the case when z ∈ Z0. Then g(z) = h(z), and therefore V˜ = U˜.  It follows from this that both g and h map the open set Nz into U˜. But p ◦ g = p ◦ h, and p|U˜: U˜ → U is a homeomorphism. Therefore g|Nz = h|Nz, and thus Nz ⊂ Z0. We have thus shown that, for each z ∈ Z0, there exists an open set Nz such that z ∈ Nz and Nz ⊂ Z0. We conclude that Z0 is open.

Next consider the case when z ∈ Z Z0. In this case U˜ ∩ V˜ = ∅, since g(z) ≠h(z). But g(Nz) ⊂ U˜ and h(Nz) ⊂ V˜ . Therefore g(z0) ≠h(z0) for all z0 ∈ Nz, and thus Nz ⊂ Z0. We have thus shown that, for each z ∈ Z0,  there exists an open set Nz such that z ∈ Nz and Nz ⊂ Z Z0. We conclude that Z Z0 is open.

The subset Z0 of Z is therefore both open and closed. Also Z0 is nonempty by hypothesis. We deduce that Z0 = Z, since Z is connected. Thus g = h, as required.

Lemma 1.3 Let p: X˜ → X be a covering map, let Z be a topological space,  let A be a connected subset of Z, and let f:Z → X and g: A → X˜ be continuous maps with the property that p ◦ g = f|A. Suppose that f(Z) ⊂ U,  where U is an open subset of X that is evenly covered by the covering map p.

Then there exists a continuous map ˜f:Z → X˜ such that ˜f|A = g and p ◦f˜=f.

Proof The open set U is evenly covered by the covering map p, and therefore p-1 (U) is a disjoint union of open sets, each of which is mapped homeomorphically onto U by the covering map p. One of these open sets contains g(a) for some a ∈ A; let this set be denoted by U˜. Let σ: U → U˜ be the inverse of the homeomorphism p|U˜: U˜ → U, and let f˜= σ ◦ f. Then p ◦f˜ = f.

Also p ◦f˜|A = p ◦ g and f˜(a) = g(a). It follows from Proposition 1.2 that f˜|A = g, since A is connected. Thus f˜:Z → X˜ is the required map.

Theorem 1.4 (Path Lifting Theorem) Let p: X˜ → X be a covering map, let γ: [0, 1] → X be a continuous path in X, and let w be a point of X˜ satisfying p(w) = γ(0). Then there exists a unique continuous path γ˜: [0, 1] → X˜ such that γ˜(0) = w and p ◦ γ˜ = γ.

Proof The map p: X˜ → X is a covering map; therefore there exists an open cover U of X such that each open set U belonging to X is evenly covered by the map p. Now the collection consisting of the preimages γ−1 (U) of the open sets U belonging to U is an open cover of the interval [0, 1]. But [0, 1] is compact, by the Heine-Borel Theorem. It follows from the Lebesgue Lemma that there exists some δ > 0 such that every subinterval of length less than δ is mapped by γ into one of the open sets belonging to U. Partition the interval  [0, 1] into subintervals [ti−1, ti], where 0 = t0 < t1 < · · · < tn−1 < tn = 1, and where the length of each subinterval is less than δ. Then each subinterval  [ti−1, ti] is mapped by γ into some open set in X that is evenly covered by the map p. It follows from Lemma 1.3 that once γ˜ (ti−1) has been determined,  we can extend γ˜ continuously over the ith subinterval [ti−1, ti]. Thus by extending γ˜ successively over [t0, t1], [t1, t2],. . ., [tn−1, tn], we can lift the path γ: [0, 1] → X to a path γ˜: [0, 1] → X˜ starting at w. The uniqueness of γ˜ follows from Proposition 1.2.

Theorem 1.5 (The Monodromy Theorem) Let p: X˜ → X be a covering map, let H: [0, 1] × [0, 1] → X be a continuous map, and let w be a point of X˜ satisfying p(w) = H(0, 0). Then there exists a unique continuous map H˜ : [0, 1] × [0, 1] → X˜ such that H˜ (0, 0) = w and p ◦ H˜ = H.

Proof The unit square [0, 1] × [0, 1] is compact. By applying the Lebesgue Lemma to an open cover of the square by preimages of evenly covered open sets in X (as in the proof of Theorem 1.4), we see that there exists some δ > 0 with the property that any square contained in [0, 1] × [0, 1] whose sides have length less than δ is mapped by H into some open set in X which is evenly covered by the covering map p. It follows from Lemma 1.3 that if the lift H˜ of H has already been determined over a corner, or along one side,  or along two adjacent sides of a square whose sides have length less than δ,  then H˜ can be extended over the whole of that square. Thus if we subdivide  [0, 1] × [0, 1] into squares Sj,k, where

and 1/n < δ, then we can construct a lift H˜ of H by defining H˜ (0, 0) = w,  and then successively extending H˜ in turn over each of these smaller squares.

(Indeed the map H˜ can be extended successively over the squares

S1,1, S1,2, . . . , S1,n, S2,1, S2,2, . . . , S2,n, S3,1, . . . , Sn−1,n, . . . , Sn,1, Sn,2, . . . , Sn,n.)

The uniqueness of H˜ follows from Proposition 1.2.

 

 

 

 

 

 

 

 

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.