المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
{افان مات او قتل انقلبتم على اعقابكم}
2024-11-24
العبرة من السابقين
2024-11-24
تدارك الذنوب
2024-11-24
الإصرار على الذنب
2024-11-24
معنى قوله تعالى زين للناس حب الشهوات من النساء
2024-11-24
مسألتان في طلب المغفرة من الله
2024-11-24

الاحرام واحكامه
2024-11-10
تأثير الوراثة
8-10-2017
Scalar massless field in the Schwarzschild metric
2-2-2017
علي بن ابي طالب (عليه السلام) امام المتقين
2024-04-09
الوضع السياسي في العراق في القرن العاشر قبل الميلاد
10-9-2020
دليل الجنة
2023-04-09

Quotient Vector Space  
  
1377   06:13 مساءً   date: 4-8-2021
Author : المرجع الالكتروني للمعلوماتيه
Book or Source : www.almerja.com
Page and Part : ...


Read More
Date: 9-8-2021 1454
Date: 25-7-2021 1835
Date: 1-6-2021 1732

Quotient Vector Space

Suppose that V={(x_1,x_2,x_3)} and W={(x_1,0,0)}. Then the quotient space V/W (read as "V mod W") is isomorphic to {(x_2,x_3)}=R^2.

In general, when W is a subspace of a vector space V, the quotient space V/W is the set of equivalence classes [v] where v_1∼v_2 if v_1-v_2 in W. By "v_1 is equivalent to v_2 modulo W," it is meant that v_1=v_2+w for some w in W, and is another way to say v_1∼v_2. In particular, the elements of W represent [0]. Sometimes the equivalence classes [v] are written as cosets v+W.

The quotient space is an abstract vector space, not necessarily isomorphic to a subspace of V. However, if V has an inner product, then V/W is isomorphic to

 W^_|_={v:<v,w>=0 for all w in W}.

In the example above, W^_|_={(0,x_2,x_3)}.

Unfortunately, a different choice of inner product can change W^_|_. Also, in the infinite-dimensional case, it is necessary for W to be a closed subspace to realize the isomorphism between V/W and W^_|_, as well as to ensure the quotient space is a T2-space.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.