x
هدف البحث
بحث في العناوين
بحث في اسماء الكتب
بحث في اسماء المؤلفين
اختر القسم
موافق
تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Thurston,s Geometrization Conjecture
المؤلف: Anderson, M. T.
المصدر: "Scalar Curvature and Geometrization Conjectures for 3-Manifolds." MSRI Publ. 30, 1997. https://www.math.sunysb.edu/~anderson/.
الجزء والصفحة: ...
15-8-2021
3139
Thurston's conjecture proposed a complete characterization of geometric structures on three-dimensional manifolds.
Before stating Thurston's geometrization conjecture in detail, some background information is useful. Three-dimensional manifolds possess what is known as a standard two-level decomposition. First, there is the connected sum decomposition, which says that every compact three-manifold is the connected sum of a unique collection of prime three-manifolds.
The second decomposition is the Jaco-Shalen-Johannson torus decomposition, which states that irreducible orientable compact 3-manifolds have a canonical (up to isotopy) minimal collection of disjointly embedded incompressible tori such that each component of the 3-manifold removed by the tori is either "atoroidal" or "Seifert-fibered."
Thurston's conjecture is that, after you split a three-manifold into its connected sum and the Jaco-Shalen-Johannson torus decomposition, the remaining components each admit exactly one of the following geometries:
1. Euclidean geometry,
2. Hyperbolic geometry,
3. Spherical geometry,
4. The geometry of ,
5. The geometry of ,
6. The geometry of the universal cover of the Lie group ,
7. Nil geometry, or
8. Sol geometry.
Here, is the 2-sphere (in a topologist's sense) and is the hyperbolic plane. If Thurston's conjecture is true, the truth of the Poincaré conjecture immediately follows. Thurston shared the 1982 Fields Medal for work done in proving that the conjecture held in a subset of these cases.
Six of these geometries are now well understood, and there has been a great deal of progress with hyperbolic geometry (the geometry of constant negative scalar curvature). However, the geometry of constant positive curvature is still poorly understood, and in this geometry, the Thurston elliptization conjecture extends the Poincaré conjecture (Milnor).
Results due to Perelman (2002, 2003) appear to establish the geometrization conjecture, and thus also the Poincaré conjecture. Unlike a number of previous manuscripts attempting to prove the Poincaré conjecture, mathematicians familiar with Perelman's work describe it as well thought-out and expect that it will be difficult to locate any mistakes (Robinson 2003).
REFERENCES:
Anderson, M. T. "Scalar Curvature and Geometrization Conjectures for 3-Manifolds." MSRI Publ. 30, 1997. https://www.math.sunysb.edu/~anderson/.
Collins, G. P. "The Shapes of Space." Sci. Amer. 291, 94-103, July 2004.
Milnor, J. "The Poincaré Conjecture." https://www.claymath.org/millennium/Poincare_Conjecture/Official_Problem_Description.pdf.
Milnor, J. Collected Papers, Vol. 2: The Fundamental Group. Publish or Perish Press, p. 93, 1995.
Perelman, G. "The Entropy Formula for the Ricci Flow and Its Geometric Application" 11 Nov 2002. https://arxiv.org/abs/math.DG/0211159.
Perelman, G. "Ricci Flow with Surgery on Three-Manifolds" 10 Mar 2003. https://arxiv.org/abs/math.DG/0303109.
Robinson, S. "Russian Reports He Has Solved a Celebrated Math Problem." The New York Times, p. D3, April 15, 2003.
Thurston, W. P. "Three-Dimensional Manifolds, Kleinian Groups and Hyperbolic Geometry." Bull. Amer. Math. Soc. 6, 357-381, 1982.
Weisstein, E. W. "Poincaré Conjecture Proved--This Time for Real." MathWorld Headline News, Apr. 15, 2003. https://mathworld.wolfram.com/news/2003-04-15/poincare/.