المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الفيزياء
عدد المواضيع في هذا القسم 11580 موضوعاً
الفيزياء الكلاسيكية
الفيزياء الحديثة
الفيزياء والعلوم الأخرى
مواضيع عامة في الفيزياء

Untitled Document
أبحث عن شيء أخر
{ان أولى الناس بإبراهيم للذين اتبعوه}
2024-10-31
{ما كان إبراهيم يهوديا ولا نصرانيا}
2024-10-31
أكان إبراهيم يهوديا او نصرانيا
2024-10-31
{ قل يا اهل الكتاب تعالوا الى كلمة سواء بيننا وبينكم الا نعبد الا الله}
2024-10-31
المباهلة
2024-10-31
التضاريس في الوطن العربي
2024-10-31

الآفات الحشرية التي تصيب بنجر السكر
21-11-2019
الصومعة Silo
4-2-2020
Reaction stoichiometry
23-1-2017
Gram-Negative Anaerobes
7-3-2016
ما يصح السجود عليه
20-11-2016
الدليل العقلي والنقلي
13-6-2019

Equilibrium Distribution of Electrons and Holes  
  
3072   10:14 صباحاً   date: 17-5-2017
Author : Donald A. Neamen
Book or Source : Semiconductor Physics and Devices
Page and Part : p 104


Read More
Date: 22-10-2020 1742
Date: 18-10-2020 913
Date: 14-5-2017 1012

Equilibrium Distribution of Electrons and Holes

The distribution (with respect to energy) of electrons in the conduction band is given by the density of allowed quantum states times the probability that a state is occupied by an electron. This statement is written in equation form as

(1)

where fF(E) is the Fermi-Dirac probability function and gc (E) is the density of quantum states in the conduction band. The total electron concentration per unit volume in the conduction band is then found by integrating Equation (1) over the entire conduction-band energy.

Similarly, the distribution (with respect to energy) of holes in the valence bend is the density of allowed quantum states in the valence hand multiplied by the probability that a state is not occupied by an electron. We may express this as

(2)

The total hole concentration per unit volume is found by integrating this function over the entire valence-band energy.

To find the thermal-equilibrium electron and hole concentrations, we need to determine the position of the Fermi energy F with respect to the bottom of the conduction-band energy Ec and the top of the valence-band energy Ev. To address this question, we will initially consider an intrinsic semiconductor. An ideal intrinsic semiconductor is a pure semiconductor with no impurity atoms and no lattice defects in the crystal (e.g., pure silicon). We have argued in the previous chapter that, for an intrinsic semiconductor at T = 0 K, all energy states in the valence band are filled with electrons and all energy states in the conduction band are empty of electrons. The Fermi energy must, therefore, be somewhere between Ec and Ev. (The Fermi energy does not need to correspond to an allowed energy.)

As the temperature begins to increase above 0 K, the valence electrons will gain thermal energy. A few electrons in the valence band may gain sufficient energy to jump to the conduction band. As an electron jumps from the valence band to the conduction band, an empty state, or hole, is created in the valence band. In an intrinsic semiconductor, then, electrons and holes are created in pairs by the thermal energy so

Figure 1.1 (a) Density of states functions, Fermi-Dirac probability function, and areas representing electron and hole concentrations for the case when EF is near the midgap energy; (b) expanded view near the conduction band energy; and (c) expanded view near the valence band energy.

that the number of electrons in the conduction band is equal to the number of holes in the valence band.

Figure 1.la shows a plot of the density of states function in the conduction band gc(E), the density of states function in the valence band gv(E), and the Fermi-Dirac probability function for T > 0 K when EF is approximately halfway between Ec and Ev. If we assume, for the moment, that the electron and hole effective masses are equal, then gc(E) and gv (E) are symmetrical functions about the midgap energy (the energy midway between Ec and Ev). We noted previously that the function , fF (E) for E > EF is symmetrical to the function 1 – fF (E) for E < EF about the energy E = EF. This also means that the function fF (E) for E = EF + dE is equal to the function 1 – fF(E) for E = EF - dE.

Figure 1.1b is an expanded view of the plot in Figure 1.la showing fF(E) and gc (E) above the conduction band energy Ec. The product of gc(E) and fF(E) is the distribution of electrons n(E) in the conduction band given by Equation (1). This product is plotted in Figure 1.la. Figure 1.lc is an expanded view of the plot in Figure 1.la showing [ 1 – fF ( E )] and gv(E) below the valence band energy Ev. The product of gv (E) and [ 1 – fF (E)] is the distribution of holes p(E) in the vale d band given by Equation (2). This product is also plotted in Figure 1. la. The areas under these curves are then the total density of electrons in the conduction band and the total density of holes in the valence band. From this we see that if gc(E) and gv(E) are symmetrical, the Femi energy must be at the midgap energy in order to obtain equal electron and hole concentrations. If the effective masses of the electron and hole are not exactly equal, then the effective density of states functions gc(E) and gv(E) will not be exactly symmetrical about the midgap energy. The Fermi level for the intrinsic semiconductor will then shift slightly from the midgap energy in order to obtain equal electron and hole concentrations.




هو مجموعة نظريات فيزيائية ظهرت في القرن العشرين، الهدف منها تفسير عدة ظواهر تختص بالجسيمات والذرة ، وقد قامت هذه النظريات بدمج الخاصية الموجية بالخاصية الجسيمية، مكونة ما يعرف بازدواجية الموجة والجسيم. ونظرا لأهميّة الكم في بناء ميكانيكا الكم ، يعود سبب تسميتها ، وهو ما يعرف بأنه مصطلح فيزيائي ، استخدم لوصف الكمية الأصغر من الطاقة التي يمكن أن يتم تبادلها فيما بين الجسيمات.



جاءت تسمية كلمة ليزر LASER من الأحرف الأولى لفكرة عمل الليزر والمتمثلة في الجملة التالية: Light Amplification by Stimulated Emission of Radiation وتعني تضخيم الضوء Light Amplification بواسطة الانبعاث المحفز Stimulated Emission للإشعاع الكهرومغناطيسي.Radiation وقد تنبأ بوجود الليزر العالم البرت انشتاين في 1917 حيث وضع الأساس النظري لعملية الانبعاث المحفز .stimulated emission



الفيزياء النووية هي أحد أقسام علم الفيزياء الذي يهتم بدراسة نواة الذرة التي تحوي البروتونات والنيوترونات والترابط فيما بينهما, بالإضافة إلى تفسير وتصنيف خصائص النواة.يظن الكثير أن الفيزياء النووية ظهرت مع بداية الفيزياء الحديثة ولكن في الحقيقة أنها ظهرت منذ اكتشاف الذرة و لكنها بدأت تتضح أكثر مع بداية ظهور عصر الفيزياء الحديثة. أصبحت الفيزياء النووية في هذه الأيام ضرورة من ضروريات العالم المتطور.