المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر

الإمام الجواد والمأمون
26-8-2017
interdental (adj./n.)
2023-09-25
الصنوبري الحلبي
29-12-2015
ذرائع المعاندين
23-10-2014
Defining the mole
18-1-2017
هل تمتلك اطوار الحشرات غير الكاملة اجنحة؟
14-1-2021

Charlotte Angas Scott  
  
92   12:40 مساءً   date: 22-2-2017
Author : J Green and J LaDuke
Book or Source : Contributors to American Mathematics: An Overview and Selection, in G Kass-Simon and P Farnes
Page and Part : ...


Read More
Date: 20-2-2017 73
Date: 18-2-2017 48
Date: 18-2-2017 108

Born: 8 June 1858 in Lincoln, England

Died: 10 November 1931 in Cambridge, England


Charlotte Angas Scott's father, the Rev Caleb Scott, was a Congregational Church minister and Principal of the Lancashire Independent College, Whalley Range. He provided tutors for his daughter from the age of seven and it was from these tutors that Charlotte Scott was first introduced to mathematics.

She won a scholarship in 1876 to Hitchin College, soon to be renamed Girton College, of the University of Cambridge. Four years later she was placed eighth Wrangler but, as a woman, she was not allowed to graduate. Kenschaft, writing in [3], quotes a report of the graduation ceremony in 1880:-

The man read out the names and when he came to 'eighth', before he could say the name, all the undergraduates called out 'Scott of Girton', and cheered tremendously, shouting her name over and over again with tremendous cheers and raising of hats.

Scott continued research at Girton on algebraic geometry under Cayley's supervision, receiving her doctorate in 1885. This was the same year that Bryn Mawr College in Pennsylvania, United States, opened. The College was founded by Joseph Taylor, a Quaker, and it was set up with Quaker beliefs although it operated as a nondenominational college. It was the first higher education institution in the United States offering graduate training for women. On Cayley's recommendation, Scott was appointed there and became the first head of the Bryn Mawr mathematics department.

In 1894 Scott published an important textbook An Introductory Account of Certain Modern Ideas and Methods in Plane Analytical Geometry. In 1899 she became an editor of the American Journal of Mathematics and continued an impressive publication record. She also served on the Council of the American Mathematical Society and served as its vice-president in 1905.

Scott retired from teaching in 1924 and, after spending one further year at Bryn Mawr, during which time she completed the supervision of her final doctoral student, she returned to England.

Macaulay wrote in [5]:-

Miss Scott was a geometer who whenever possible brought to analytical geometry the full resources of pure geometrical reasoning.

Alfred North Whitehead, speaking in 1922 at a meeting of the American Mathematical Society held at Bryn Mawr in Scott's honour, said:-

A friendship of peoples is the outcome of personal relations. A life's work such as that of Professor Charlotte Angas Scott is worth more to the world than many anxious efforts of diplomatists. She is a great example of the universal brotherhood of civilisations.

After her return to Cambridge in 1925, Scott became increasingly deaf and this prevented her taking much part in life at the University. A young member of Scott's family wrote these words about her in [1]:-

Aunt Charlie, as she was known to her nephews and nieces, was always accessible and only too pleased to chat with us on matters great and small. She had a tremendous sense of humour, and a twinkle was never far from her eyes. Recently, on telling her of our decision to take a small flat while on leave, despite the kind offer to put us up, she remarked, "I always say I would rather mismanage my own house than be well managed in someone else's!". She was a clever and witty speaker, and would often say she loved words; indeed she was never at a loss for words out of the common, and an increasing deafness made her find talking easier than listening. She out-lived most of her family of the same generation, but with admirable courage, after 30 years in America, settled down in Cambridge for the few years left to her.


 

Books:

  1. J Green and J LaDuke, Contributors to American Mathematics: An Overview and Selection, in G Kass-Simon and P Farnes (eds.), Women of Science-Righting the Record (Indiana, 1990).

Articles:

  1. L S Grinstein and P J Campbell (eds.), Women of Mathematics (Westport, Conn., 1987), 193-203.
  2. P Kenschaft, Charlotte Angas Scott, 1858-1931, The College Mathematics Journal 18 (1987), 98-110.
  3. F S Macaulay, Dr Charlotte Angas Scott, J. London Mathematical Society 7 (1932), 230-240.
  4. I Maddison and M Lehr, Charlotte Angas Scott : An appreciation, Bryn Mawr Alumni Bulletin 12 (1932), 9-12.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.