المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
القيمة الغذائية للثوم Garlic
2024-11-20
العيوب الفسيولوجية التي تصيب الثوم
2024-11-20
التربة المناسبة لزراعة الثوم
2024-11-20
البنجر (الشوندر) Garden Beet (من الزراعة الى الحصاد)
2024-11-20
الصحافة العسكرية ووظائفها
2024-11-19
الصحافة العسكرية
2024-11-19

تعريف التفسير وتمييزه عن التأويل
13-10-2014
معنى كلمة ختر
4-06-2015
الليسوسومات Lysosomes
22-2-2017
ابن الرومي
25-7-2019
النقد السياسي
24-03-2015
قاعدة « كلّ من وجبت نفقته على الغير وجبت فطرته عليه‌»
20-9-2016

Trigonometric functions of any angle  
  
1571   02:38 مساءً   date: 13-2-2017
Author : المرجع الالكتروني للمعلوماتيه
Book or Source : www.almerja.com
Page and Part : ...

Trigonometric functions of any angle

Unit circle. Counting of angles in a unit circle. 
Negative and positive angles. Quarters of a unit circle. 
Sine and cosine lines. Sine. Cosine. Signs of sine and 
cosine in different quarters of a unit circle. Tangent 
and cotangent lines. Tangent. Cotangent. Signs of 
tangent and cotangent in different quarters of a unit 
circle. Secant and cosecant.

To build all trigonometry, laws of which would be valid for any angles ( not only for acute angles, but also for obtuse, positive and negative angles), it is necessary to consider so called a unit circle, that is a circle with a radius, equal to 1 ( Fig.3 ).

Let draw two diameters: a horizontal AA’ and a vertical BB’. We count angles off a point A (starting point). Negative angles are counted in a clockwise, positive in an opposite direction. A movable radius OC forms angle α with an immovable radius OA. It can be placed in the 1-st quarter ( COA ), in the 2-nd quarter ( DOA ), in the 3-rd quarter ( EOA ) or in the 4-th quarter ( FOA ). Considering OA  and  OB  as positive directions and  OA’  and  OB’ as negative ones, we determine trigonometric functions of angles as follows.

sine line of an angle http://www.bymath.com/studyguide/alfa.gif ( Fig.4 ) is a vertical diameter of a unit circle, a cosine line of an angle α - a horizontal diameter of a unit circle. A sine of an angle α ( Fig.4 ) is the segment OB of a sine line, that is a projection of a movable radius OK to a sine line; acosine of an angle http://www.bymath.com/studyguide/alfa.gif - the segment OA of a cosine line, that is a projection of a movable radius OK to a cosine line.

Signs of sine and cosine in different quarters of a unit circle are shown on Fig.5 and Fig.6.

tangent line ( Fig.7 ) is a tangent, drawn to a unit circle through the point A of a horizontal diameter.
cotangent line ( Fig.8 ) is a tangent, drawn to a unit circle through the point B of a vertical diameter.
tangent is a segment of a tangent line between the tangency point A and an intersection point ( D, E, etc., Fig.7 ) of a tangent line and a radius line. 
cotangent is a segment of a cotangent line between the tangency point B and an intersection point ( P, Q, etc., Fig.8 ) of a cotangent line and a radius line.

Signs of tangent and cotangent in different quarters of a unit circle see on Fig.9.

Secant and cosecant are determined as reciprocal values of cosine and sine correspondingly.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.