المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الفيزياء
عدد المواضيع في هذا القسم 11580 موضوعاً
الفيزياء الكلاسيكية
الفيزياء الحديثة
الفيزياء والعلوم الأخرى
مواضيع عامة في الفيزياء

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
{افان مات او قتل انقلبتم على اعقابكم}
2024-11-24
العبرة من السابقين
2024-11-24
تدارك الذنوب
2024-11-24
الإصرار على الذنب
2024-11-24
معنى قوله تعالى زين للناس حب الشهوات من النساء
2024-11-24
مسألتان في طلب المغفرة من الله
2024-11-24


Motion in the equatorial plane  
  
1411   05:23 مساءً   date: 2-2-2017
Author : Heino Falcke and Friedrich W Hehl
Book or Source : THE GALACTIC BLACK HOLE Lectures on General Relativity and Astrophysics
Page and Part : p 143


Read More
Date: 8-2-2017 1839
Date: 21-12-2015 1464
Date: 21-12-2015 1472

Motion in the equatorial plane

For particles moving in the equatorial plane of a rotating black hole, the expressions for dr/dτ and dφ/dτ can be written in the form

 (1.1)

 (1.2)

They are analogous to the corresponding equations for a Schwarzschild black hole. An analysis of the peculiarities of motion is performed in the same way as before by using the effective potential.

1.1 Circular orbits

The most important class of orbits is circular orbits. For given and lz , the radius r0 of a circular orbit can be found by solving simultaneously the equations

 (1.3)

Figure 1.1. Trajectories of particles in the equatorial plane. In each case two trajectories are shown. Both trajectories have the same initial conditions. The particle is moving in the Kerr metric with a = |a| and a = −|a|, respectively.

One can also use these equations to obtain the expressions for the specific energy circ and specific angular momentum lcirc as functions of the radius r of the circular motion [15],

 (1.4)

 (1.5)

The upper signs in these and the subsequent formulas correspond to direct orbits (i.e. co-rotating with lz > 0), and the lower signs correspond to retrograde orbits (counter-rotating with lz < 0). We always assume that a ≥ 0.

The coordinate angular velocity of a particle on the circular orbit is

 (1.6)

Figure 1.2. rphoton, rbind, and rbound as functions of the rotation parameter a/M. The quantities corresponding to the direct and retrograde motions are shown by dashed and dotted lines, respectively.

1.2 Last stable circular orbits

Circular orbits can exist only for those values of r for which the denominator in the expressions for circ and lcirc is real, i.e.

 (1.7)

The radius of the circular orbit closest to the black hole (the motion along it occurs at the speed of light) is

 (1.8)

This orbit is unstable. For a = 0, we have rphoton = 3M, while for a = M, we

find rphoton = M (direct motion) or rphoton = 4M (retrograde motion).

The circular orbits with r > rphoton and ≥ 1 are unstable. A small perturbation directed outwards forces the particle to leave its orbit and escape to infinity on an asymptotically hyperbolic trajectory.

The radius of the unstable circular orbit, on which circ = 1, is given by

 (1.9)

These values of the radius are the minima of periastra of all parabolic orbits. A particle in the equatorial plane, coming from infinity where its velocity is v << c, is captured if it passes the black hole closer than rbind.

Finally the radius of the boundary circle separating stable circular orbits from unstable ones is given by the expression

 (1.10)

Table 1.1. The radii rphoton, rbind, and rbound (in units of rS = 2M) for a non-rotating (a = 0) and an extremely rotating (a = M) black hole.

Table 1.2. Specific energy , specific binding energy 1 − , and specific angular momentum |lz |/M of a test particle at the last stable circular orbit.

where

 (1.11)

 (1.12)

The quantities rphoton, rbind, and rbound as the functions of the rotation parameter a/M are shown in figure 1.2.

Table 1.1 lists rphoton, rbind, and rbound for the black hole rotating at the limiting angular velocity, a = M, and gives a comparison with the case of a = 0 (in units of rS = 2M). As a M, the invariant distance from a point r to the horizon r+,

 (1.13)

diverges. This does not mean that all orbits coincide in this limit and lie at the horizon, although at L > 0 the radii r of all three orbits tend to the same limit r+ [15]. Finally, we will give the values of specific energy , specific binding energy 1 − , and specific angular momentum |lz |/M of a test particle at the last stable circular orbit, rbound (see table 1.2).

The binding energy has a maximum for an extremely rotating black hole with a = M. It is equal to

 (1.14)

Thus, the maximum efficiency of the energy release by matter falling into a rotating black hole is 42%. This is much higher than in a non-rotating case.

1.3 Motion with negative Ẽ

It is easy to show that orbits with negative are possible within the ergosphere for any θ ≠ 0, π. This follows from the fact that the Killing vector ξ(t) is spacelike inside the ergosphere. The specific energy is defined as = −uμξμ (t). Local analysis shows that for a fixed spacelike vector ξ(t) it is always possible to find a timelike or null vector uμ representing the four-velocity of a particle or a photon so that is negative. Orbits with Ẽ < 0 make it possible to devise processes that extract the ‘rotational energy’ of the black hole. Such processes were discovered  by Penrose [16].




هو مجموعة نظريات فيزيائية ظهرت في القرن العشرين، الهدف منها تفسير عدة ظواهر تختص بالجسيمات والذرة ، وقد قامت هذه النظريات بدمج الخاصية الموجية بالخاصية الجسيمية، مكونة ما يعرف بازدواجية الموجة والجسيم. ونظرا لأهميّة الكم في بناء ميكانيكا الكم ، يعود سبب تسميتها ، وهو ما يعرف بأنه مصطلح فيزيائي ، استخدم لوصف الكمية الأصغر من الطاقة التي يمكن أن يتم تبادلها فيما بين الجسيمات.



جاءت تسمية كلمة ليزر LASER من الأحرف الأولى لفكرة عمل الليزر والمتمثلة في الجملة التالية: Light Amplification by Stimulated Emission of Radiation وتعني تضخيم الضوء Light Amplification بواسطة الانبعاث المحفز Stimulated Emission للإشعاع الكهرومغناطيسي.Radiation وقد تنبأ بوجود الليزر العالم البرت انشتاين في 1917 حيث وضع الأساس النظري لعملية الانبعاث المحفز .stimulated emission



الفيزياء النووية هي أحد أقسام علم الفيزياء الذي يهتم بدراسة نواة الذرة التي تحوي البروتونات والنيوترونات والترابط فيما بينهما, بالإضافة إلى تفسير وتصنيف خصائص النواة.يظن الكثير أن الفيزياء النووية ظهرت مع بداية الفيزياء الحديثة ولكن في الحقيقة أنها ظهرت منذ اكتشاف الذرة و لكنها بدأت تتضح أكثر مع بداية ظهور عصر الفيزياء الحديثة. أصبحت الفيزياء النووية في هذه الأيام ضرورة من ضروريات العالم المتطور.