المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
القيمة الغذائية للثوم Garlic
2024-11-20
العيوب الفسيولوجية التي تصيب الثوم
2024-11-20
التربة المناسبة لزراعة الثوم
2024-11-20
البنجر (الشوندر) Garden Beet (من الزراعة الى الحصاد)
2024-11-20
الصحافة العسكرية ووظائفها
2024-11-19
الصحافة العسكرية
2024-11-19

مفهوم نظام المعلومات الجغرافي GIS
17-4-2022
الحسين بن أبي الفرج بن ردة
6-8-2016
نبات القرفة
2024-09-10
واجبات الدولة المتولدة عن الحقوق المتصلة بالحق في الخصوصية
28-3-2017
الوفيات
23-11-2021
القوة السكانية للدولة - الحركة السكانية
12/11/2022

Marie Jean Antoine Nicolas de Caritat Condorcet  
  
1626   03:04 مساءاً   date: 31-3-2016
Author : K M Baker
Book or Source : Condorcet - form Natural Philosophy to Social Mathematics
Page and Part : ...


Read More
Date: 23-3-2016 701
Date: 23-3-2016 775
Date: 22-3-2016 855

Born: 17 September 1743 in Ribemont, France
Died: 29 March 1794 in Bourg-la-Reine (near Paris), France

 

Marie-Jean-Antoine-Nicolas de Caritat took his title Marquis de Condorcet from the town of Condorcet in Dauphiné. He was educated in Jesuit Colleges in Reims and at the Collège de Navarre in Paris. He then studied at the Collège Mazarin in Paris.

In 1765 Condorcet published Essai sur le calcul intégral. He was elected to the Académie des Sciences in 1769. During this period he produced several important works, including one in 1772 on the integral calculus which was described by Lagrange as:-

filled with sublime and fruitful ideas which could have furnished material for several works.

Soon after the publication of his 1772 work, Condorcet met Turgot, a French economist who became an administrator under Louis XV. Turgot became Controller General of Finance in 1774 under Louis XVI and he had Condorcet appointed Inspector General of the Mint.

Turgot was dismissed from his post in 1776 and Condorcet tended his resignation. However Condorcet's resignation was refused and he continued to fill this post until 1791.

In 1777 Condorcet was appointed Secretary of the Académie des Sciences. He had been advised by Voltaire and by d'Alembert to become an expert in writing obituaries in order to improve his chances of getting the post. It certainly was good advice but it severely curtailed his mathematical output.

His most important work was on probability and the philosophy of mathematics. His most important treatise was Essay on the Application of Analysis to the Probability of Majority Decisions (1785). This is an extremely important work in the development of the theory of probability.

He is known for the Condorcet Paradox which points out that it is possible that a majority prefers option A over option B, a majority prefers option B over option C, and yet a majority prefers option C over option A. (Thus, "majority prefers" is not transitive.)

Condorcet published Vie de M Turgot (1786) and Vie de Voltaire (1789). In these biographies he showed that he favoured Turgot's economic theories and agreed with Voltaire in his opposition to the Church. Also in 1786 he again worked on his ideas for the differential and integral calculus, giving a new treatment of infinitesimals. However his treatise was never printed.

When the French Revolution broke out Condorcet championed the liberal cause. He was elected as the Paris representative in the Legislative Assembly and he became the secretary of the Assembly. He drew up plans for a state education system which were adopted.

By 1792 Condorcet had become one of the leaders of the Republican cause. He joined the moderate Girondists and argued strongly that the King's life should be spared.

When the Girondists fell from favour and the Jacobins, a more radical political group led by Robespierre, took over, Condorcet argued strongly against the new, hurriedly written, constitution which was drawn up to replace the one which he himself had been chiefly responsible for drawing up. This showed a lack of sense and he paid for it when a warrant was issued for his arrest.

Condorcet went into hiding and wrote a very interesting philosophical work Esquisse d'un tableau historique des progrès de l'esprit humain (1795). In March 1794 he thought that the house in which he was hiding in Paris was being watched by his enemies and he no longer felt safe. He fled from Paris and after three days he was arrested and imprisoned on 27 March 1794. Two days later he was found dead in his prison cell and it is not known if he died from natural causes or whether he was murdered or took his own life.

J Herival described Condorcet as follows:-

... Condorcet was no politician. His uncompromising directness of manner and inability to suffer illogical windbags in silence made him many enemies and few friends. His weak voice, lack of oratorical powers, and tendency to bore the Convention by the excessive height of his arguments was one of the tragedies of the Revolution.

His life is summed up by H B Acton in [2] as follows:-

Wholly a man of the Enlightenment, an advocate of economic freedom, religious toleration, legal and educational reform, and the abolition of slavery, Condorcet sought to extend the empire of reason to social affairs. Rather than elucidate human behaviour, as had been done thus far, by recourse to either the moral or physical sciences, he sought to explain it by a merger of the two sciences that eventually became transmuted into the discipline of sociology.


 

  1. G Granger, Biography in Dictionary of Scientific Biography (New York 1970-1990). 
    http://www.encyclopedia.com/doc/1G2-2830900971.html
  2. Biography in Encyclopaedia Britannica. 
    http://www.britannica.com/eb/article-9025130/Marie-Jean-Antoine-Nicolas-de-Caritat-marquis-de-Condorcet

Books:

  1. K M Baker, Condorcet - form Natural Philosophy to Social Mathematics (Chicago, 1975).
  2. L Cahen, Condorcet et la Révolution française (1904).
  3. G-G Granger, La Mathématique sociale du marquis de Condorcet (1956).
  4. S F Lacroix, Notice historique sur la vie et les ouvrages de Condorcet (Paris, 1813).
  5. J F E Robinet, Condorcet, sa vie, son oeuvre, 1743-1794 (Paris, 1893).

Articles:

  1. B Bru, Condorcet, mathématique sociale et vérité, Math. Inform. Sci. Humaines 128 (1994), 5-14.
  2. P Crépel, Condorcet, un mathématicien du social, La Recherche 207 (1989), 248-249.
  3. P Crépel, Le dernier mot de Condorcet sur les élections, Math. Inform. Sci. Humaines 111 (1990), 7-43.
  4. P Crépel, De Condorcet à Arago : l'enseignement des probabilités en France de 1786 à 1830, Bull. Soc. Amis Bibl. École Polytech. (4) (1989), 29-55.
  5. P Crépel, Le premier manuscrit de Condorcet sur le calcul des probabilités (1772), Historia Math. 14 (3) (1987), 282-283.
  6. P Crépel, Condorcet, la théorie des probabilités et les calculs financiers, Sciences à l'époque de la Révolution Française (Paris, 1988), 267-325.
  7. C Gilain, Condorcet et le calcul intégral, Sciences à l'époque de la Révolution Française (Paris, 1988), 87-147.
  8. C Henry, Sur la vie et les écrits mathématiques de Jean Antoine Nicolas Caritat Marquis de Condorcet, Bollettino di bibliografia e storia delle scienze mathematiche 16 (1883), 271-.
  9. B Monjardet, Sur diverses formes de la 'règle de Condorcet' d'agrégation des préférences, Math. Inform. Sci. Humaines 111 (1990), 61-71.
  10. M Morange, Condorcet et les naturalistes de son temps, Sciences à l'époque de la Révolution Française (Paris, 1988), 445-464.
  11. M Whitrow, Condorcet: a pioneer in information retrieval, Annals of Science 39 (6) (1982), 585-592.
  12. H P Young, Condorcet's theory of voting, Math. Inform. Sci. Humaines 111 (1990), 45-59.
  13. A P Youschkevitch, The concept of function in the works of Condorcet (Russian), Studies in the history of mathematics 19 'Nauka' (Moscow, 1974), 158-166, 301.
  14. A P Youschkevitch, La notion de fonction chez Condorcet, in D J Struik, R S Cohen, J J Stachel, M W Wartofsky (Eds) For Dirk Struik (Dordrecht, 1974), 131-139.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.