المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر

توفر دورة حمض السيتريك الركيزة للسلسلة التنفسية
31-7-2021
أحوال الجنة وأهلها
11-08-2015
Robert Pollock Gillespie
10-10-2017
قصة شمعون
11-10-2014
التجميع الذاتي من الاسفل (القعر) الى الأعلى (القمة) Bottom Up Self-Assembly
5-12-2016
إبراهيم محطِّم الأَصنام


مجسمات أفلاطون Pato Solids  
  
2639   01:59 صباحاً   التاريخ: 7-12-2015
المؤلف : صالح رشيد بطارسه
الكتاب أو المصدر : معجم الرياضيات
الجزء والصفحة : 287
القسم : الرياضيات / الهندسة / مواضيع عامة في الهندسة /


أقرأ أيضاً
التاريخ: 29-12-2015 1370
التاريخ: 9-11-2015 1880
التاريخ: 29-12-2015 1985
التاريخ: 9-11-2015 7189

هي خمسة مجسمات بالتحديد , يطلق عليها اسم المجسمات الأفلاطونية نسبة إلى أفلاطون (428 – 347) ق.م .

وهي وعلى الترتيب .

المكعب ــ الرباعي الأوجه المثلثية الشكل المنتظم ــ الثماني الأوجه المثلثية الشكل المنتظم ــ ذو الاثنى عشر وجه المثلثي الشكل المنتظم .

ان دراسة هذه المجسمات والتي تشغل حيزاً في الفضاء تختص بها " الهندسة الفضائية " .

 

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.