Read More
Date: 11-5-2022
1101
Date: 10-5-2022
1502
Date: 28-7-2016
1464
|
Two nonisomorphic graphs are said to be chromatically equivalent (also termed "chromically equivalent by Bari 1974) if they have identical chromatic polynomials. A graph that does not share a chromatic polynomial with any other nonisomorphic graph is said to be a chromatically unique graph.
The chromatically equivalent simple graphs on five or fewer vertices are illustrated above.
Bari (1974) gives a number of chromatically equivalent graph pairs on 11 to 17 vertices that are planar triangulations.
It appears to be the case that all resistance-equivalent graphs are also chromatically equivalent.
Bari, R. A. "Chromatically Equivalent Graphs." In Graphs and Combinatorics (Ed. R. A. Bari and F. Harary). Berlin: Springer-Verlag, pp. 186-200, 1974.
Bari, R. A. "Recent Results on Chromatically Equivalent Graphs." In Second International Conference on Combinatorial Mathematics (New York, 1978). Ann. New York Acad. Sci. 319, 37-46, 1979.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
وفد كلية الزراعة في جامعة كربلاء يشيد بمشروع الحزام الأخضر
|
|
|