Read More
Date: 9-2-2016
![]()
Date: 9-2-2016
![]()
Date: 12-2-2016
![]() |
The total domination number of a graph is the size of a smallest total dominating set, where a total dominating set is a set of vertices of the graph such that all vertices (including those in the set itself) have a neighbor in the set. Total dominating numbers are defined only for graphs having no isolated vertex (plus the trivial case of the singleton graph
).
For example, in the Petersen graph illustrated above, since the set
is a minimum dominating set (left figure), while
since
is a minimum total dominating set (right figure).
For any simple graph with no isolated points, the total domination number
and ordinary domination number
satisfy
(1) |
(Henning and Yeo 2013, p. 17). In addition, if is a bipartite graph, then
(2) |
(Azarija et al. 2017), where denotes the graph Cartesian product.
For a connected graph with vertex count
,
(3) |
(Cockayne et al. 1980, Henning and Yeo 2013, p. 11).
Azarija, J.; Henning, M. A.; and Klavžar, S. "(Total) Domination in Prisms." Electron. J. Combin. 24, No. 1, paper 1.19, 2017.
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v24i1p19.Cockayne, E. J., Dawes, R. M., and Hedetniemi, S. T. "Total Domination in Graphs." Networks 10, 211-219, 1980.
Henning, M. A. and Yeo, A. Total Domination in Graphs. New York: Springer, 2013.
|
|
"إنقاص الوزن".. مشروب تقليدي قد يتفوق على حقن "أوزيمبيك"
|
|
|
|
|
الصين تحقق اختراقا بطائرة مسيرة مزودة بالذكاء الاصطناعي
|
|
|
|
|
مكتب السيد السيستاني يعزي أهالي الأحساء بوفاة العلامة الشيخ جواد الدندن
|
|
|