المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية

أحمد بن عُبْدون
22-8-2016
رسائل ترويجية
2-5-2020
صبغة كرام واستخدامها لصبغ خلايا البكتيريا (Gram Stain)
25-1-2023
تفسير الاية (254) من سورة البقرة
10-5-2017
معامل كسب المكبر بمنبع مشترك
26-9-2021
في وثاقة أصحاب الإمام الصادق (عليه السلام).
2024-09-22

Boole,s Rule  
  
688   08:20 مساءً   date: 2-12-2021
Author : Abramowitz, M. and Stegun, I. A
Book or Source : Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, 1972.
Page and Part : ...


Read More
Date: 5-12-2021 413
Date: 14-12-2021 765
Date: 12-12-2021 748

Boole's Rule

Let the values of a function f(x) be tabulated at points x_i equally spaced by h=x_(i+1)-x_i, so f_1=f(x_1)f_2=f(x_2), ..., f_5=f(x_5). Then Boole's rule approximating the integral of f(x) is given by the Newton-Cotes-like formula

 int_(x_1)^(x_5)f(x)dx=2/(45)h(7f_1+32f_2+12f_3+32f_4+7f_5)-8/(945)h^7f^((6))(xi).

This formula is frequently and mistakenly known as Bode's rule (Abramowitz and Stegun 1972, p. 886) as a result of a typo in an early reference, but is actually due to Boole (Boole and Moulton 1960).


REFERENCES:

Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, 1972.

Boole, G. and Moulton, J. F. A Treatise on the Calculus of Finite Differences, 2nd rev. ed. New York: Dover, 1960.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.