المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
وظـائـف اتـجاهـات المـستهـلك
2024-11-28
كيفيّة محاسبة النّفس واستنطاقها
2024-11-28
المحاسبة
2024-11-28
الحديث الموثّق
2024-11-28
الفرعون رعمسيس الثامن
2024-11-28
رعمسيس السابع
2024-11-28

الحقيقة والــــــمجاز
5-8-2016
الجانب الإيجابي في التعاون
2023-05-30
Zellweger Syndrome
6-10-2020
الإلتفات والأكل والشرب
23-8-2017
مدلول الوساطة الجنائية
2023-09-04
Modified Spherical Bessel Differential Equation
23-6-2018

Classification Theorem of Surfaces  
  
1619   05:31 مساءً   date: 11-8-2021
Author : Seifert, H. and Threlfall, W
Book or Source : A Textbook of Topology. New York: Academic Press, 1980.
Page and Part : ...


Read More
Date: 25-7-2021 1838
Date: 29-7-2021 1711
Date: 20-5-2021 1237

Classification Theorem of Surfaces

All closed surfaces, despite their seemingly diverse forms, are topologically equivalent to spheres with some number of handles or cross-caps. The traditional proof follows Seifert and Threlfall (1980), but Conway's so-called "zero-irrelevancy" ("ZIP") provides a more streamlined approach (Francis and Weeks 1999).


REFERENCES:

Francis, G. K. and Weeks, J. R. "Conway's ZIP Proof." Amer. Math. Monthly 106, 393-399, 1999.

Seifert, H. and Threlfall, W. A Textbook of Topology. New York: Academic Press, 1980.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.