المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9764 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر

الأفعال التي تنصب مفعولين
23-12-2014
صيغ المبالغة
18-02-2015
الجملة الإنشائية وأقسامها
26-03-2015
اولاد الامام الحسين (عليه السلام)
3-04-2015
معاني صيغ الزيادة
17-02-2015
انواع التمور في العراق
27-5-2016

Poincaré Conjecture  
  
2083   11:57 صباحاً   date: 10-7-2021
Author : Adams, C. C.
Book or Source : "The Poincaré Conjecture, Dehn Surgery, and the Gordon-Luecke Theorem." §9.3 in The Knot Book: An Elementary Introduction to the Mathematical...
Page and Part : ...


Read More
Date: 4-8-2021 1575
Date: 31-5-2021 1625
Date: 22-5-2021 952

Poincaré Conjecture

In its original form, the Poincaré conjecture states that every simply connected closed three-manifold is homeomorphic to the three-sphere (in a topologist's sense) S^3, where a three-sphere is simply a generalization of the usual sphere to one dimension higher. More colloquially, the conjecture says that the three-sphere is the only type of bounded three-dimensional space possible that contains no holes. This conjecture was first proposed in 1904 by H. Poincaré (Poincaré 1953, pp. 486 and 498), and subsequently generalized to the conjecture that every compact n-manifold is homotopy-equivalent to the n-sphere iff it is homeomorphic to the n-sphere. The generalized statement reduces to the original conjecture for n=3.

The Poincaré conjecture has proved a thorny problem ever since it was first proposed, and its study has led not only to many false proofs, but also to a deepening in the understanding of the topology of manifolds (Milnor). One of the first incorrect proofs was due to Poincaré himself (1953, p. 370), stated four years prior to formulation of his conjecture, and to which Poincaré subsequently found a counterexample. In 1934, Whitehead (1962, pp. 21-50) proposed another incorrect proof, then discovered a counterexample (the Whitehead link) to his own theorem.

The n=1 case of the generalized conjecture is trivial, the n=2 case is classical (and was known to 19th century mathematicians), n=3 (the original conjecture) appears to have been proved by recent work by G. Perelman (although the proof has not yet been fully verified), n=4 was proved by Freedman (1982) (for which he was awarded the 1986 Fields medal), n=5 was demonstrated by Zeeman (1961), n=6 was established by Stallings (1962), and n>=7 was shown by Smale in 1961 (although Smale subsequently extended his proof to include all n>=5).

The Clay Mathematics Institute included the conjecture on its list of $1 million prize problems. In April 2002, M. J. Dunwoody produced a five-page paper that purports to prove the conjecture. However, Dunwoody's manuscript was quickly found to be fundamentally flawed (Weisstein 2002).

The work of Perelman (2002, 2003; Robinson 2003) established a more general result known as the Thurston's geometrization conjecture from which the Poincaré conjecture immediately follows. Perelman's work has subsequently been verified, thus establishing the conjecture.


REFERENCES:

Adams, C. C. "The Poincaré Conjecture, Dehn Surgery, and the Gordon-Luecke Theorem." §9.3 in The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. New York: W. H. Freeman, pp. 257-263, 1994.

Batterson, S. Stephen Smale: The Mathematician Who Broke the Dimension Barrier. Providence, RI: Amer. Math. Soc., 2000. Bing, R. H. "Some Aspects of the Topology of 3-Manifolds Related to the Poincaré Conjecture." In Lectures on Modern Mathematics, Vol. II (Ed. T. L. Saaty). New York: Wiley, pp. 93-128, 1964.

Birman, J. "Poincaré's Conjecture and the Homeotopy Group of a Closed, Orientable 2-Manifold." J. Austral. Math. Soc. 17, 214-221, 1974.

Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, pp. 38-39, 2003.

Brodie, J. "Perelman Explains Proof to Famous Math Mystery." The Daily Princetonian. April 17, 2003.

Clay Mathematics Institute. "The Poincaré Conjecture." http://www.claymath.org/millennium/Poincare_Conjecture/.

Collins, G. P. "The Shapes of Space." Sci. Amer. 291, 94-103, July 2004.

Dunwoody, M. J. "A Proof of the Poincaré Conjecture." http://www.maths.soton.ac.uk/pure/viewabstract.phtml?entry=655. Rev. Apr. 9, 2002.

Freedman, M. H. "The Topology of Four-Differentiable Manifolds." J. Diff. Geom. 17, 357-453, 1982.

Gabai, D. "Valentin Poenaru's Program for the Poincaré Conjecture." In Geometry, Topology, & Physics, Conf. Proc. Lecture Notes Geom. Topol., VI (Ed. S.-T. Yau). Cambridge, MA: International Press, pp. 139-166, 1995.

Gillman, D. and Rolfsen, D. "The Zeeman Conjecture for Standard Spines is Equivalent to the Poincaré Conjecture." Topology 22, 315-323, 1983.

Jakobsche, W. "The Bing-Borsuk Conjecture is Stronger than the Poincaré Conjecture." Fund. Math. 106, 127-134, 1980.

Johnson, G. "A Mathematician's World of Doughnuts and Spheres." The New York Times, April 20, 2003, p. 5.

Milnor, J. "The Poincaré Conjecture." http://www.claymath.org/millennium/Poincare_Conjecture/Official_Problem_Description.pdf.

Milnor, J. W. "The Poincaré Conjecture 99 Years Later: A Progress Report." http://www.math.sunysb.edu/~jack/PREPRINTS/poiproof.pdf.

Nikitin, S. "Proof of the Poincare Conjecture" 22 Oct 2002. http://arxiv.org/abs/math.GT/0210334.

Papakyriakopoulos, C. "A Reduction of the Poincaré Conjecture to Group Theoretic Conjectures." Ann. Math. 77, 250-205, 1963.

Perelman, G. "The Entropy Formula for the Ricci Flow and Its Geometric Application" 11 Nov 2002. http://arxiv.org/abs/math.DG/0211159.

Perelman, G. "Ricci Flow with Surgery on Three-Manifolds" 10 Mar 2003. http://arxiv.org/abs/math.DG/0303109.

Poincaré, H. "Cinquième complément à l'analysis situs." Rend. Circ. Mat. Palermo 18, 45-110, 1904. Reprinted in Oeuvres, Tome VI. Paris, 1953, p. 498.

Œuvres de Henri Poincaré, tome VI. Paris: Gauthier-Villars, pp. 486 and 498, 1953.

Robinson, S. "Russian Reports He Has Solved a Celebrated Math Problem." The New York Times, p. D3, April 15, 2003.

Rourke, C. "Algorithms to Disprove the Poincaré Conjecture." Turkish J. Math. 21, 99-110, 1997.

Rubinstein, J. H. "Polyhedral Minimal Surfaces, Heegaard Splittings and Decision Problems for 3-Dimensional Manifolds." In Geometric Topology. Proceedings of the 1993 Georgia International Topology Conference held at the University of Georgia, Athens, GA, August 2-13, 1993 (Ed. W. H. Kazez). Cambridge, MA: International Press, pp. 1-20, 1997.

Stallings, J. "The Piecewise-Linear Structure of Euclidean Space." Proc. Cambridge Philos. Soc. 58, 481-488, 1962.

Smale, S. "Generalized Poincaré's Conjecture in Dimensions Greater than Four." Ann. Math. 74, 391-406, 1961.

Smale, S. "The Story of the Higher Dimensional Poincaré Conjecture (What Actually Happened on the Beaches of Rio)." Math. Intell. 12, 44-51, 1990.

Smale, S. "Mathematical Problems for the Next Century." Math. Intelligencer 20, No. 2, 7-15, 1998.

Smale, S. "Mathematical Problems for the Next Century." In Mathematics: Frontiers and Perspectives 2000 (Ed. V. Arnold, M. Atiyah, P. Lax, and B. Mazur). Providence, RI: Amer. Math. Soc., 2000.

Thickstun, T. L. "Open Acyclic 3-Manifolds, a Loop Theorem, and the Poincaré Conjecture." Bull. Amer. Math. Soc. 4, 192-194, 1981.

Thompson, A. "Thin Position and the Recognition Problem for S^3." Math. Res. Letters 1, 613-630, 1994.

Weisstein, E. W. "Poincaré Conjecture Purported Proof Perforated." MathWorld Headline News, Apr. 18, 2002. http://mathworld.wolfram.com/news/2002-04-18/poincare/.

Weisstein, E. W. "Poincaré Conjecture Proved--This Time for Real." MathWorld Headline News, Apr. 15, 2003. http://mathworld.wolfram.com/news/2003-04-15/poincare/.

Whitehead, J. H. C. Mathematical Works, Vol. 2. London: Pergamon Press, 1962.

Zeeman, E. C. "The Generalised Poincaré Conjecture." Bull. Amer. Math. Soc. 67, 270, 1961.

Zeeman, E. C. "The Poincaré Conjecture for n>=5." In Topology of 3-Manifolds and Related Topics, Proceedings of the University of Georgia Institute, 1961. Englewood Cliffs, NJ: Prentice-Hall, pp. 198-204, 1961.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.





شعبة مدارس الكفيل النسوية تطلق فعّاليات مخيم (بنات العقيدة) العشرين
قسم التربية والتعليم يعقد اجتماعاً تحضيرياً لملاكاته استعداداً لانطلاق برنامجه التأهيلي
متحف الكفيل يعقد أولى اجتماعاته التحضيرية لمؤتمره الدوليّ الخامس
وفد قسم الشؤون الفكرية وسفير العراق في فرنسا يبحثان سبل تعزيز التعاون المشترك