المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر

الحساسات النانوية لرصد وتعقب حرائق الغابات
2023-12-21
الاشتغال بالذكر والدعاء بين الطلوعين
14-4-2016
عبادة الأم
12-1-2016
حادثة سقوط نيزك في سنة 916هـ
2023-06-10
الهرم السكاني العمري
2-6-2016
خليفة ابن عدي بن عمرو
4-8-2017

Simplicial Homomorphism  
  
1278   07:01 مساءً   date: 17-5-2021
Author : Hatcher, A
Book or Source : Algebraic Topology. Cambridge, England: Cambridge University Press, 2002.
Page and Part : ...


Read More
Date: 26-5-2021 1519
Date: 20-6-2021 1556
Date: 27-6-2021 1783

Simplicial Homomorphism

Let f:K^((0))->L^((0)) be a bijective correspondence such that the vertices v_0, ..., v_n of K span a simplex of K iff f(v_0), ..., f(v_n) span a simplex of L. Then the induced simplicial map g:|K|->|L| is a homeomorphism, and the map g is called a simplicial homeomorphism (Munkres 1993, p. 13).


REFERENCES:

Hatcher, A. Algebraic Topology. Cambridge, England: Cambridge University Press, 2002.

Munkres, J. R. Elements of Algebraic Topology. New York: Perseus Books Pub., 1993.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.