Presheaf
المؤلف:
Hartshorne, R
المصدر:
Algebraic Geometry. Berlin: Springer-Verlag
الجزء والصفحة:
pp. 60-61
15-5-2021
1905
Presheaf
For
a topological space, the presheaf
of Abelian groups (rings, ...) on
is defined such that
1. For every open subset
, an Abelian group (ring, ...)
, and
2. For every inclusion
of open subsets of
, a morphism of Abelian groups (rings, ...) 
subject to the conditions:
1. If
denotes the empty set, then
,
2.
is the identity map
, and
3. If
are three open subsets, then
.
In the language of categories, let
be the category whose objects are the open subsets of
and the only morphisms are the inclusion maps. Thus,
is empty if
and
has just one element if
. Then a presheaf is a contravariant functor from the category
to the category
of Abelian groups (
of rings, ...).
As a terminology, if
is a presheaf on
, then
are called the sections of the presheaf over the open set
, sometimes denoted as
. The maps
are called the restriction maps. If
, then the notation
is usually used instead of
.
REFERENCES:
Hartshorne, R. Algebraic Geometry. Berlin: Springer-Verlag, pp. 60-61, 1977.
الاكثر قراءة في التبلوجيا
اخر الاخبار
اخبار العتبة العباسية المقدسة