تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Prime Knot
المؤلف:
Adams, C. C.
المصدر:
The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. New York: W. H. Freeman
الجزء والصفحة:
...
24-6-2021
2966
Prime Knot
A knot is called prime if, for any decomposition as a connected sum, one of the factors is unknotted (Livingston 1993, pp. 5 and 78). A knot which is not prime is called a composite knot. It is often possible to combine two prime knots to create two different composite knots, depending on the orientation of the two. Schubert (1949) showed that every knot can be uniquely decomposed (up to the order in which the decomposition is performed) as a knot sum of prime knots.
In general, it is nontrivial to determine if a given knot is prime or composite (Hoste et al. 1998). However, in the case of alternating knots, Menasco (1984) showed that a reduced alternating diagram represents a prime knot iff the diagram is itself prime ("an alternating knot is prime iff it looks prime"; Hoste et al. 1998).
There is no known formula for giving the number of distinct prime knots as a function of the number of crossings. The numbers of distinct prime knots having , 2, ... crossings are 0, 0, 1, 1, 2, 3, 7, 21, 49, 165, 552, 2176, 9988, ... (OEIS A002863). A pictorial enumeration of prime knots of up to 10 crossings appears in Rolfsen (1976, Appendix C). Note, however, that in this table, the Perko pair 10-161 and 10-162 are actually identical, and the uppermost crossing in 10-144 should be changed (Jones 1987). The
th knot having
crossings in this (arbitrary) ordering of knots is given the symbol
. The following table summarizes a number of named prime knots.
knot symbol | prime knot |
![]() |
unknot |
![]() |
trefoil knot |
![]() |
figure eight knot |
![]() |
Solomon's seal knot |
![]() |
stevedore's knot |
![]() |
Miller Institute knot |
-- | Conway's knot |
-- | Kinoshita-Terasaka knot |
Thistlethwaite has used Dowker notation to enumerate the number of prime knots of up to 13 crossings. In this compilation, mirror images are counted as a single knot type. Hoste et al. (1998) subsequently tabulated all prime knots up to 16 crossings. Hoste and Weeks subsequently began compiling a list of 17-crossing prime knots (Hoste et al. 1998).
Let be the number of distinct prime knots with
crossings, counting chiral versions of the same knot separately. Then
![]() |
(Ernst and Summers 1987). Welsh has shown that the number of knots is bounded by an exponential in , and it is also known that
![]() |
(Welsh 1991, Hoste et al. 1998, Thistlethwaite 1998).
REFERENCES:
Adams, C. C. The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. New York: W. H. Freeman, pp. 8-9, 1994.
Burde, G. and Zieschang, H. Knots, 2nd rev. ed. Berlin: de Gruyter, 2002.
Ernst, C. and Sumners, D. W. "The Growth of the Number of Prime Knots." Math. Proc. Cambridge Philos. Soc. 102, 303-315, 1987.
Hoste, J.; Thistlethwaite, M.; and Weeks, J. "The First Knots." Math. Intell. 20, 33-48, Fall 1998.
Jones, V. F. R. "Hecke Algebra Representations of Braid Groups and Link Polynomials." Ann. Math. 126, 335-388, 1987.
Livingston, C. Knot Theory. Washington, DC: Math. Assoc. Amer., pp. 9 and 78, 1993.
Menasco, W. "Closed Incompressible Surfaces in Alternating Knot and Link Complements." Topology 23, 37-44, 1984.
Rolfsen, D. Knots and Links. Wilmington, DE: Publish or Perish Press, p. 335, 1976.
Schubert, H. Sitzungsber. Heidelberger Akad. Wiss., Math.-Naturwiss. Klasse, 3rd Abhandlung. 1949.
Sloane, N. J. A. Sequence A002863/M0851 in "The On-Line Encyclopedia of Integer Sequences."
Sloane, N. J. A. and Plouffe, S. Figure M0851 in The Encyclopedia of Integer Sequences. San Diego: Academic Press, 1995.
Thistlethwaite, M. "On the Structure and Scarcity of Alternating Links and Tangles." J. Knot Th. Ramifications 7, 981-1004, 1998.
Welsh, D. J. A. "On the Number of Knots and Links." Colloq. Math. Soc. J. Bolyai 60, 713-718, 1991.
الاكثر قراءة في التبلوجيا
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
