Read More
Date: 26-1-2021
![]()
Date: 11-11-2019
![]()
Date: 20-8-2020
![]() |
A Liouville number is a transcendental number which has very close rational number approximations. An irrational number is called a Liouville number if, for each
, there exist integers
and
such that
![]() |
Note that the first inequality is true by definition, since it follows immediately from the fact that is irrational and hence cannot be equal to
for any values of
and
.
Liouville's constant is an example of a Liouville number and is sometimes called "the" Liouville number or "Liouville's number" (Wells 1986, p. 26). Mahler (1953) proved that is not a Liouville number.
REFERENCES:
Apostol, T. M. Modular Functions and Dirichlet Series in Number Theory, 2nd ed. New York: Springer-Verlag, p. 147, 1997.
Mahler, K. "On the Approximation of ." Nederl. Akad. Wetensch. Proc. Ser. A. 56/Indagationes Math. 15, 30-42, 1953.
Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, 1986.
|
|
دخلت غرفة فنسيت ماذا تريد من داخلها.. خبير يفسر الحالة
|
|
|
|
|
ثورة طبية.. ابتكار أصغر جهاز لتنظيم ضربات القلب في العالم
|
|
|
|
|
سماحة السيد الصافي يؤكد ضرورة تعريف المجتمعات بأهمية مبادئ أهل البيت (عليهم السلام) في إيجاد حلول للمشاكل الاجتماعية
|
|
|