المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر

الرجز في الشعر الأموي
25-12-2015
تقدير تركيز الكلوتاثايون في مصل الدم
2024-08-22
الأصل في الواجبات
26-8-2016
Quantum  Xerox  Principle
16-12-2015
نظريات عملية الاتصال
28-6-2016
ترجيح بينة الطلاق الحائض على بينة الطلاق الحامل
7-5-2017

Smarandache Near-to-Primorial Function  
  
622   03:23 مساءً   date: 30-11-2020
Author : Ashbacher, C.
Book or Source : "A Note on the Smarandache Near-To-Primordial Function." Smarandache Notions J. 7
Page and Part : ...


Read More
Date: 30-1-2021 2317
Date: 24-9-2020 478
Date: 17-8-2020 567

Smarandache Near-to-Primorial Function

SNTP(n) is the smallest prime such that p#-1p#, or p#+1 is divisible by n, where p# is the primorial of p. Ashbacher (1996) shows that SNTP(n) only exists

1. If there are no square or higher powers in the factorization of n, or

2. If there exists a prime q<p such that n|(q#+/-1), where p is the smallest power contained in the factorization of n.

Therefore, SNTP(n) does not exist for the squareful numbers n=4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, ... (OEIS A013929). The first few values of SNTP(n), where defined, are 2, 2, 2, 3, 3, 3, 5, 7, ... (OEIS A046026).


REFERENCES:

Ashbacher, C. "A Note on the Smarandache Near-To-Primordial Function." Smarandache Notions J. 7, 46-49, 1996.

Mudge, M. R. "The Smarandache Near-To-Primorial Function." Abstracts of Papers Presented to the Amer. Math. Soc. 17, 585, 1996.

Sloane, N. J. A. Sequences A013929 and A046026 in "The On-Line Encyclopedia of Integer Sequences."




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.