Read More
Date: 25-2-2020
793
Date: 22-11-2019
2003
Date: 6-5-2020
731
|
Mills' constant can be defined as the least such that
is prime for all positive integers (Caldwell and Cheng 2005).
The first few for , 2, ... are 2, 11, 1361, 2521008887, ... (OEIS A051254). They can be represented more compactly through as and
Caldwell and Cheng (2005) calculated the first 10 Mills primes. 13 are known as of Jul. 2013, with the firth few for , 2, ... being 3, 30, 6, 80, 12, 450, 894, 3636, 70756, 97220, 66768, 300840, ... (OEIS A108739). is not known, but it is known that (E. Weisstein, Aug. 13, 2013).
The integer lengths of the Mills' primes are 1, 2, 4, 10, 29, 85, 254, 762, 2285, 6854, 20562, 61684, 185052, ... (OEIS A224845).
REFERENCES:
Caldwell, C. K. and Cheng, Y. "Determining Mills' Constant and a Note on Honaker's Problem." J. Integer Sequences 8, Article 05.4.1, 1-9, 2005. https://www.cs.uwaterloo.ca/journals/JIS/VOL8/Caldwell/caldwell78.html.
Sloane, N. J. A. Sequences A051254, A108739, and A224845 in "The On-Line Encyclopedia of Integer Sequences."
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مكتبة أمّ البنين النسويّة تصدر العدد 212 من مجلّة رياض الزهراء (عليها السلام)
|
|
|