المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية

Secondary Genes
9-1-2020
لماذا وردت أسماء الأنبياء في ثلاث مجموعات في ثلاث آيات ؟
23-10-2014
مكانة الامام الرضا (عليه السلام)
19-05-2015
المودة والرحمة
17-9-2020
Diphthongs
2024-05-06
الوصف النباتي للبرجموت
2023-11-22

Robbins Constant  
  
636   05:40 مساءً   date: 12-2-2020
Author : Finch, S. R.
Book or Source : "Geometric Probability Constants." §8.1 in Mathematical Constants. Cambridge, England: Cambridge University Press
Page and Part : ...


Read More
Date: 18-5-2020 550
Date: 22-8-2020 525
Date: 27-10-2019 669

Robbins Constant

The Robbins constant is the mean line segment length, i.e., the expected distance between two points chosen at random in cube line picking, namely

Delta(3) = 1/(105)[4+17sqrt(2)-6sqrt(3)+21ln(1+sqrt(2))+42ln(2+sqrt(3))-7pi]

(1)

= 1/(105)[4+17sqrt(2)-6sqrt(3)+21sinh^(-1)1+42ln(2+sqrt(3))-7pi]

(2)

= 0.66170...

(3)

(OEIS A073012; Robbins 1978, Le Lionnais 1983).


REFERENCES:

Finch, S. R. "Geometric Probability Constants." §8.1 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 479-484, 2003.

Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 30, 1983.

Robbins, D. "Average Distance between Two Points in a Box." Amer. Math. Monthly 85, 278, 1978.

Sloane, N. J. A. Sequences A073012, A160693, and A160694 in "The On-Line Encyclopedia of Integer Sequences."




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.