المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
اية الميثاق والشهادة لعلي بالولاية
2024-11-06
اية الكرسي
2024-11-06
اية الدلالة على الربوبية
2024-11-06
ما هو تفسير : اهْدِنَا الصِّراطَ الْمُسْتَقِيمَ ؟
2024-11-06
انما ارسناك بشيرا ونذيرا
2024-11-06
العلاقات الاجتماعية الخاصة / علاقة الوالدين بأولادهم
2024-11-06

تعاون المنظمة الدولية للشرطة الجنائية مع المنظمات الاقليمية لمواجهة الإرهاب السيبراني
2024-01-03
شعر لابي العباس أحمد الإشبيلي
2023-02-11
دورة حياة دودة الطحين الهندية Plodia interpunctella
3-2-2016
A clever coach
11/10/2022
جمع المؤنث السالم
25-11-2021
Ionic material
10-5-2020

Concordant Form  
  
525   04:58 مساءً   date: 18-5-2020
Author : Dickson, L. E
Book or Source : History of the Theory of Numbers, Vol. 1: Divisibility and Primality. New York: Dover
Page and Part : ...


Read More
Date: 16-11-2020 644
Date: 1-11-2019 677
Date: 9-6-2020 602

Concordant Form

A concordant form is an integer triple (a,b,N) where

 {a^2+b^2=c^2; a^2+Nb^2=d^2,

(1)

with c and d integers. Examples include

 {14663^2+111384^2=112345^2; 14663^2+47·111384^2=763751^2 
{1141^2+13260^2=13309^2; 1141^2+53·13260^2=96541^2 
{2873161^2+2401080^2=3744361^2; 2873161^2+83·2401080^2=22062761^2.

(2)

Dickson (2005) states that C. H. Brooks and S. Watson found in The Ladies' and Gentlemen's Diary (1857) that x^2+y^2 and x^2+Ny^2 can be simultaneously squares for N<100 only for 1, 7, 10, 11, 17, 20, 22, 23, 24, 27, 30, 31, 34, 41, 42, 45, 49, 50, 52, 57, 58, 59, 60, 61, 68, 71, 72, 74, 76, 77, 79, 82, 85, 86, 90, 92, 93, 94, 97, 99, and 100 (which evidently omits 47, 53, and 83 from above). The list of concordant primes less than 1000 is now complete with the possible exception of the 16 primes 103, 131, 191, 223, 271, 311, 431, 439, 443, 593, 607, 641, 743, 821, 929, and 971.


REFERENCES:

Dickson, L. E. History of the Theory of Numbers, Vol. 1: Divisibility and Primality. New York: Dover, p. 475, 2005.

MathPages. "Concordant Forms." https://www.mathpages.com/home/kmath286.htm.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.