x
هدف البحث
بحث في العناوين
بحث في اسماء الكتب
بحث في اسماء المؤلفين
اختر القسم
موافق
تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Collatz Problem
المؤلف: Applegate, D. and Lagarias, J. C.
المصدر: "Density Bounds for the 3x+1 Problem 1. Tree-Search Method." Math. Comput. 64
الجزء والصفحة: ...
25-10-2020
3206
A problem posed by L. Collatz in 1937, also called the mapping, problem, Hasse's algorithm, Kakutani's problem, Syracuse algorithm, Syracuse problem, Thwaites conjecture, and Ulam's problem (Lagarias 1985). Thwaites (1996) has offered a £1000 reward for resolving the conjecture. Let be an integer. Then one form of Collatz problem asks if iterating
(1) |
always returns to 1 for positive . (If negative numbers are included, there are four known cycles (excluding the trivial 0 cycle): (4, 2, 1), (, ), (, , , , ), and (, , , , , , , , , , , , , , , , , ).)
The members of the sequence produced by the Collatz are sometimes known as hailstone numbers. Conway proved that the original Collatz problem has no nontrivial cycles of length . Lagarias (1985) showed that there are no nontrivial cycles with length . Conway (1972) also proved that Collatz-type problems can be formally undecidable. Kurtz and Simon (2007) proved that a natural generalization of the Collatz problem is undecidable; unfortunately, this proof cannot be applied to the original Collatz problem.
The Collatz algorithm has been tested and found to always reach 1 for all numbers (Oliveira e Silva 2008), improving the earlier results of (Vardi 1991, p. 129) and (Leavens and Vermeulen 1992). Because of the difficulty in solving this problem, Erdős commented that "mathematics is not yet ready for such problems" (Lagarias 1985).
The following table gives the sequences obtained for the first few starting values (OEIS A070165).
, , , ... | |
1 | 1 |
2 | 2, 1 |
3 | 3, 10, 5, 16, 8, 4, 2, 1 |
4 | 4, 2, 1 |
5 | 5, 16, 8, 4, 2, 1 |
6 | 6, 3, 10, 5, 16, 8, 4, 2, 1 |
The numbers of steps required for the algorithm to reach 1 for , 2, ... are 0, 1, 7, 2, 5, 8, 16, 3, 19, 6, 14, 9, 9, 17, 17, 4, 12, 20, 20, 7, ... (OEIS A006577; illustrated above). Of these, the numbers of tripling steps are 0, 0, 2, 0, 1, 2, 5, 0, 6, ... (OEIS A006667), and the number of halving steps are 0, 1, 5, 2, 4, 6, 11, 3, 13, ... (OEIS A006666). The smallest starting values of that yields a Collatz sequence containing , 2, ... are 1, 2, 3, 3, 3, 6, 7, 3, 9, 3, 7, 12, 7, 9, 15, 3, 7, 18, 19, ... (OEIS A070167).
The Collatz problem can be implemented as an 8-register machine (Wolfram 2002, p. 100), quasi-cellular automaton (Cloney et al. 1987, Bruschi 2005), or 6-color one-dimensional quasi-cellular automaton with local rules but which wraps first and last digits around (Zeleny). In general, the difficulty in constructing true local-rule cellular automata arises from the necessity of a carry operation when multiplying by 3 which, in the worst case, can extend the entire length of the base- representation of digits (and thus require propagating information at faster than the CA's speed of light).
The Collatz problem was modified by Terras (1976, 1979), who asked if iterating
(2) |
always returns to 1 for initial integer value (e.g., Lagarias 1985, Cloney et al. 1987). This is simply the original statement above but combining the division by two into the addition step if is odd, thus compressing the number of steps. The following table gives the sequences for the first few starting values , 2, ... (OEIS A070168).
, , ... | |
1 | 1 |
2 | 2, 1 |
3 | 3, 5, 8, 4, 2, 1 |
4 | 4, 2, 1 |
5 | 5, 8, 4, 2, 1 |
6 | 6, 3, 5, 8, 4, 2, 1 |
7 | 7, 11, 17, 26, 13, 20, 10, 5, 8, 4, 2, 1 |
If negative numbers are included, there are 4 known cycles: (1, 2), (), (, , ), and (, , , , , , , , , , ). It is a special case of the "generalized Collatz problem" with , , , , and . Terras (1976, 1979) also proved that the set of integers has a limiting asymptotic density , such that if is the number of such that and , then the limit
(3) |
exists. Furthermore, as , so almost all integers have a finite stopping time. Finally, for all ,
(4) |
where
(5) |
|||
(6) |
|||
(7) |
(Lagarias 1985).
A generalization of the Collatz problem lets be a positive integer and , ..., be nonzero integers. Also let satisfy
(8) |
Then
(9) |
for defines a generalized Collatz mapping. An equivalent form is
(10) |
for where , ..., are integers and is the floor function. The problem is connected with ergodic theory and Markov chains. Matthews obtained the following table for the mapping
(11) |
where .
# cycles | max. cycle length | |
0 | 5 | 27 |
1 | 10 | 34 |
2 | 13 | 118 |
3 | 17 | 118 |
4 | 19 | 118 |
5 | 21 | 165 |
6 | 23 | 433 |
Matthews and Watts (1984) proposed the following conjectures.
1. If , then all trajectories for eventually cycle.
2. If , then almost all trajectories for are divergent, except for an exceptional set of integers satisfying
(12) |
3. The number of cycles is finite.
4. If the trajectory for is not eventually cyclic, then the iterates are uniformly distribution mod for each , with
(13) |
for .
Matthews believes that the map
(14) |
will either reach 0 (mod 3) or will enter one of the cycles or , and offers a $100 (Australian?) prize for a proof.
REFERENCES:
Applegate, D. and Lagarias, J. C. "Density Bounds for the Problem 1. Tree-Search Method." Math. Comput. 64, 411-426, 1995.
Applegate, D. and Lagarias, J. C. "Density Bounds for the Problem 2. Krasikov Inequalities." Math. Comput. 64, 427-438, 1995.
Bruschi, M. "Two Cellular Automata for the Map." https://arxiv.org/abs/nlin/0502061/. 26 Feb, 2005.
Burckel, S. "Functional Equations Associated with Congruential Functions." Theor. Comp. Sci. 123, 397-406, 1994.
Cloney, T.; Goles, E.; and Vichniac, G. Y. "The Problem: A Quasi Cellular Automaton." Complex Sys. 1, 349-360, 1987.
Conway, J. H. "Unpredictable Iterations." Proc. 1972 Number Th. Conf., University of Colorado, Boulder, Colorado, pp. 49-52, 1972.
Crandall, R. "On the '' Problem." Math. Comput. 32, 1281-1292, 1978.
De Mol, L. "Tag Systems and Collatz-Like Functions." Theor. Comput. Sci. 390, 92-101, 2008.
Everett, C. "Iteration of the Number Theoretic Function , ." Adv. Math. 25, 42-45, 1977.
Guy, R. K. "Collatz's Sequence." §E16 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 215-218, 1994.
Kurtz, S. A. and Simon, J. "The Undecidability of the Generalized Collatz Problem." In Theory and Applications of Models of Computation: Proceedings of the 4th International Conference (TAMC 2007) held in Shanghai, May 22-25, 2007 (Ed. J.-Y. Cai, S. B. Cooper, and H. Zhu). Berlin: Springer, pp. 542-553, 2007.
Lagarias, J. C. "The Problem and Its Generalizations." Amer. Math. Monthly 92, 3-23, 1985.
Leavens, G. T. and Vermeulen, M. " Search Programs." Comput. Math. Appl. 24, 79-99, 1992.
Margenstern, M. and Matiyasevich, Y. "A Binomial Representation of the Problem." Acta Arith. 91, 367-378, 1999.
Matthews, K. R. "The Generalized Mapping." https://www.numbertheory.org/pdfs/survey.pdf.
Matthews, K. R. "A Generalized Conjecture." [$100 Reward for a Proof.] https://www.numbertheory.org/gnubc/challenge.
Matthews, K. R. and Watts, A. M. "A Generalization of Hasses's Generalization of the Syracuse Algorithm." Acta Arith. 43, 167-175, 1984.
Oliveira e Silva, T. "Maximum Excursion and Stopping Time Record-Holders for the Problem: Computational Results." Math. Comput. 68, 371-384, 1999.
Oliveira e Silva, T. "Computational Verification of the Conjecture." Sep. 19, 2008. https://www.ieeta.pt/~tos/3x+1.html.
Schroeppel, R.; Gosper, R. W.; Henneman, W.; and Banks, R. Item 133 in Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, p. 64, Feb. 1972. https://www.inwap.com/pdp10/hbaker/hakmem/flows.html#item133.
Sloane, N. J. A. Sequences A006577/M4323, A006666/M3733, A006667/M0019, A070165, A070166, A070167, A070168, in "The On-Line Encyclopedia of Integer Sequences."
Terras, R. "A Stopping Time Problem on the Positive Integers." Acta Arith. 30, 241-252, 1976.
Terras, R. "On the Existence of a Density." Acta Arith. 35, 101-102, 1979.
Thwaites, B. "Two Conjectures, or How to Win £1100." Math. Gaz. 80, 35-36, 1996.
Vardi, I. "The Problem." Ch. 7 in Computational Recreations in Mathematica. Redwood City, CA: Addison-Wesley, pp. 129-137, 1991.
Wirsching, G. J. "Über das Problem." Elem. Math. 55, 142-155, 2000.
Wolfram, S. A New Kind of Science. Champaign, IL: Wolfram Media, pp. 100, 122, and 904, 2002.
Zeleny, E. "Collatz Problem as a Cellular Automaton." https://demonstrations.wolfram.com/CollatzProblemAsACellularAutomaton/.