Read More
Date: 10-5-2020
![]()
Date: 12-12-2020
![]()
Date: 20-8-2020
![]() |
Given four points chosen at random inside a unit cube, the average volume of the tetrahedron determined by these points is given by
![]() |
(1) |
where the polyhedron vertices are located at where
, ..., 4, and the (signed) volume is given by the determinant
![]() |
(2) |
The integral is extremely difficult to compute, but the analytic result for the mean tetrahedron volume is
![]() |
(3) |
(OEIS A093524; Zinani 2003). Note that the result quoted in the reply to Seidov (2000) actually refers to the average volume for tetrahedron tetrahedron picking.
REFERENCES:
Do, K.-A. and Solomon, H. "A Simulation Study of Sylvester's Problem in Three Dimensions." J. Appl. Prob. 23, 509-513, 1986.
Seidov, Z. F. "Letters: Random Triangle." Mathematica J. 7, 414, 2000.
Sloane, N. J. A. Sequence A093524 in "The On-Line Encyclopedia of Integer Sequences."
Zinani, A. "The Expected Volume of a Tetrahedron Whose Vertices are Chosen at Random in the Interior of a Cube." Monatshefte Math. 139, 341-348, 2003.
|
|
دخلت غرفة فنسيت ماذا تريد من داخلها.. خبير يفسر الحالة
|
|
|
|
|
ثورة طبية.. ابتكار أصغر جهاز لتنظيم ضربات القلب في العالم
|
|
|
|
|
العتبة العباسية المقدسة تدعو جامعة تكريت للمشاركة في الحفل المركزيّ لتخرّج طلبة الجامعات
|
|
|