Read More
Date: 4-1-2021
![]()
Date: 14-7-2020
![]()
Date: 14-9-2020
![]() |
Let be a number field, then each fractional ideal
of
belongs to an equivalence class
consisting of all fractional ideals
satisfying
for some nonzero element
of
. The number of equivalence classes of fractional ideals of
is a finite number, known as the class number of
. Multiplication of equivalence classes of fractional ideals is defined in the obvious way, i.e., by letting
. It is easy to show that with this definition, the set of equivalence classes of fractional ideals form an Abelian multiplicative group, known as the class group of
.
REFERENCES:
Marcus, D. A. Number Fields, 3rd ed. New York: Springer-Verlag, 1996.
|
|
دخلت غرفة فنسيت ماذا تريد من داخلها.. خبير يفسر الحالة
|
|
|
|
|
ثورة طبية.. ابتكار أصغر جهاز لتنظيم ضربات القلب في العالم
|
|
|
|
|
العتبة العباسية المقدسة تقدم دعوة إلى كلية مزايا الجامعة للمشاركة في حفل التخرج المركزي الخامس
|
|
|