Read More
Date: 17-9-2018
![]()
Date: 16-8-2019
![]()
Date: 22-4-2019
![]() |
A Lucas polynomial sequence is a pair of generalized polynomials which generalize the Lucas sequence to polynomials is given by
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
where
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
Solving for and
and taking the solution for
with the
sign gives
![]() |
(5) |
(Horadam 1996). Setting gives
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
giving
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
The sequences most commonly considered have , giving
![]() |
(10) |
The polynomials satisfy the recurrence relation
![]() |
(11) |
Special cases of the and
polynomials are given in the following table.
![]() |
![]() |
![]() |
![]() |
![]() |
1 | Fibonacci polynomial ![]() |
Lucas polynomial ![]() |
![]() |
1 | Pell polynomial ![]() |
Pell-Lucas polynomial ![]() |
1 | ![]() |
Jacobsthal polynomial ![]() |
Jacobsthal-Lucas polynomial ![]() |
![]() |
![]() |
Fermat polynomial ![]() |
Fermat-Lucas polynomial ![]() |
![]() |
![]() |
Chebyshev polynomial of the second kind ![]() |
Chebyshev polynomial of the first kind ![]() |
![]() |
![]() |
![]() |
![]() |
REFERENCES:
Horadam, A. F. "Extension of a Synthesis for a Class of Polynomial Sequences." Fib. Quart. 34, 68-74, 1996.
|
|
"إنقاص الوزن".. مشروب تقليدي قد يتفوق على حقن "أوزيمبيك"
|
|
|
|
|
الصين تحقق اختراقا بطائرة مسيرة مزودة بالذكاء الاصطناعي
|
|
|
|
|
قسم شؤون المعارف ووفد من جامعة البصرة يبحثان سبل تعزيز التعاون المشترك
|
|
|