Read More
Date: 12-10-2018
![]()
Date: 31-8-2019
![]()
Date: 15-5-2019
![]() |
In his famous paper of 1859, Riemann stated that the number of Riemann zeta function zeros
with
is asymptotically given by
![]() |
(1) |
as (Edwards 2001, p. 19; Havil 2003, p. 203; Derbyshire 2004, p. 258). This can be written more compactly as
![]() |
(2) |
This result was proved by von Mangoldt in 1905 and is hence known as the Riemann-von Mangoldt formula.
It follows that the density of zeros at height
is
![]() |
(3) |
where, as usual, the asymptotic notation means that the ratio
tends to 1 as
.
Another consequence of this result is that the imaginary parts of consecutive zeta zeros in the upper half-plane satisfy
![]() |
(4) |
Thus the mean spacing between
and
is
![]() |
(5) |
which tends to zero as .
REFERENCES:
Derbyshire, J. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. New York: Penguin, p. 217, 2004.
Edwards, H. M. Riemann's Zeta Function. New York: Dover, 2001.
Finch, S. R. Mathematical Constants. Cambridge, England: Cambridge University Press, p. 138, 2003.
Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, 2003.
Ivic, A. A. The Riemann Zeta-Function. New York: Wiley, pp. 17-20, 1985.
Riemann, G. F. B. "Über die Anzahl der Primzahlen unter einer gegebenen Grösse." Monatsber. Königl. Preuss. Akad. Wiss. Berlin, 671-680, Nov. 1859.
Reprinted in Das Kontinuum und Andere Monographen (Ed. H. Weyl). New York: Chelsea, 1972.
|
|
4 أسباب تجعلك تضيف الزنجبيل إلى طعامك.. تعرف عليها
|
|
|
|
|
أكبر محطة للطاقة الكهرومائية في بريطانيا تستعد للانطلاق
|
|
|
|
|
أصواتٌ قرآنية واعدة .. أكثر من 80 برعماً يشارك في المحفل القرآني الرمضاني بالصحن الحيدري الشريف
|
|
|