Read More
Date: 4-9-2019
![]()
Date: 1-8-2019
![]()
Date: 25-7-2019
![]() |
The invariants of a Weierstrass elliptic function are defined by the Eisenstein series
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
Here,
![]() |
(3) |
where and
are the half-periods of the elliptic function. The Wolfram Language command WeierstrassInvariants[
omega1, omega2
] gives the invariants
and
corresponding to the half-periods
and
.
Writing ,
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
and the invariants have the Fourier series
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
where is the half-period ratio and
is the divisor function (Apostol 1997).
REFERENCES:
Apostol, T. M. "The Fourier Expansions of and
." §1.9 in Modular Functions and Dirichlet Series in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 12-13, 1997.
Brezhnev, Y. V. "Uniformisation: On the Burnside Curve ." 9 Dec 2001. http://arxiv.org/abs/math.CA/0111150.
|
|
"إنقاص الوزن".. مشروب تقليدي قد يتفوق على حقن "أوزيمبيك"
|
|
|
|
|
الصين تحقق اختراقا بطائرة مسيرة مزودة بالذكاء الاصطناعي
|
|
|
|
|
مكتب السيد السيستاني يعزي أهالي الأحساء بوفاة العلامة الشيخ جواد الدندن
|
|
|