Read More
Date: 25-3-2019
![]()
Date: 25-4-2019
![]()
Date: 6-8-2019
![]() |
The spherical Hankel function of the first kind is defined by
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
where is the Hankel function of the first kind and
and
are the spherical Bessel functions of the firstand second kinds.
It is implemented in the Wolfram Language as SphericalHankelH1[n, z].
Explicitly, the first few are
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
The derivative is given by
![]() |
(7) |
The plot above shows the real and imaginary parts of on the real axis for
, 1, ..., 5.
The plots above shows the real and imaginary parts of in the complex plane.
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). "Spherical Bessel Functions." §10.1 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 437-442, 1972.
Arfken, G. Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, p. 623, 1985.
|
|
لخفض ضغط الدم.. دراسة تحدد "تمارين مهمة"
|
|
|
|
|
طال انتظارها.. ميزة جديدة من "واتساب" تعزز الخصوصية
|
|
|
|
|
طائرة شراعية تزيّن سماء كربلاء المقدّسة بلافتة حفل تخرّج طلبة الجامعات العراقية
|
|
|