Read More
Date: 17-11-2018
![]()
Date: 18-12-2018
![]()
Date: 24-10-2018
![]() |
![]() |
![]() |
The modulus of a complex number , also called the complex norm, is denoted
and defined by
![]() |
(1) |
If is expressed as a complex exponential (i.e., a phasor), then
![]() |
(2) |
The complex modulus is implemented in the Wolfram Language as Abs[z], or as Norm[z].
The square of
is sometimes called the absolute square.
Let and
be two complex numbers. Then
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
so
![]() |
(5) |
Also,
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
so
![]() |
(8) |
and, by extension,
![]() |
(9) |
The only functions satisfying identities of the form
![]() |
(10) |
are ,
, and
(Robinson 1957).
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 16, 1972.
Krantz, S. G. "Modulus of a Complex Number." §1.1.4 n Handbook of Complex Variables. Boston, MA: Birkhäuser, pp. 2-3, 1999.
Robinson, R. M. "A Curious Mathematical Identity." Amer. Math. Monthly 64, 83-85, 1957.
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
نحو شراكة وطنية متكاملة.. الأمين العام للعتبة الحسينية يبحث مع وكيل وزارة الخارجية آفاق التعاون المؤسسي
|
|
|