Read More
Date: 21-5-2018
1048
Date: 23-12-2018
742
Date: 30-5-2018
1753
|
A singular point of an algebraic curve is a point where the curve has "nasty" behavior such as a cusp or a point of self-intersection (when the underlying field is taken as the reals). More formally, a point on a curve is singular if the and partial derivatives of are both zero at the point . (If the field is not the reals or complex numbers, then the partial derivative is computed formally using the usual rules of calculus.)
The following table gives some representative named curves that have various types of singular points at their origin.
singularity | curve | equation |
acnode | ||
cusp | cusp curve | |
crunode | cardioid | |
quadruple point | quadrifolium | |
ramphoid cusp | keratoid cusp | |
tacnode | capricornoid | |
triple point | trifolium |
Consider the following two examples. For the curve
the cusp at (0, 0) is a singular point. For the curve
is a nonsingular point and this curve is nonsingular.
Singular points are sometimes known as singularities, and vice versa.
REFERENCES:
Arfken, G. "Singularities" and "Singular Points." §7.1 and 8.4 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 396-400 and 451-454, 1985.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مستشفى العتبة العباسية الميداني في سوريا يقدّم خدماته لنحو 1500 نازح لبناني يوميًا
|
|
|