1

المرجع الالكتروني للمعلوماتية

تاريخ الفيزياء

علماء الفيزياء

الفيزياء الكلاسيكية

الميكانيك

الديناميكا الحرارية

الكهربائية والمغناطيسية

الكهربائية

المغناطيسية

الكهرومغناطيسية

علم البصريات

تاريخ علم البصريات

الضوء

مواضيع عامة في علم البصريات

الصوت

الفيزياء الحديثة

النظرية النسبية

النظرية النسبية الخاصة

النظرية النسبية العامة

مواضيع عامة في النظرية النسبية

ميكانيكا الكم

الفيزياء الذرية

الفيزياء الجزيئية

الفيزياء النووية

مواضيع عامة في الفيزياء النووية

النشاط الاشعاعي

فيزياء الحالة الصلبة

الموصلات

أشباه الموصلات

العوازل

مواضيع عامة في الفيزياء الصلبة

فيزياء الجوامد

الليزر

أنواع الليزر

بعض تطبيقات الليزر

مواضيع عامة في الليزر

علم الفلك

تاريخ وعلماء علم الفلك

الثقوب السوداء

المجموعة الشمسية

الشمس

كوكب عطارد

كوكب الزهرة

كوكب الأرض

كوكب المريخ

كوكب المشتري

كوكب زحل

كوكب أورانوس

كوكب نبتون

كوكب بلوتو

القمر

كواكب ومواضيع اخرى

مواضيع عامة في علم الفلك

النجوم

البلازما

الألكترونيات

خواص المادة

الطاقة البديلة

الطاقة الشمسية

مواضيع عامة في الطاقة البديلة

المد والجزر

فيزياء الجسيمات

الفيزياء والعلوم الأخرى

الفيزياء الكيميائية

الفيزياء الرياضية

الفيزياء الحيوية

الفيزياء العامة

مواضيع عامة في الفيزياء

تجارب فيزيائية

مصطلحات وتعاريف فيزيائية

وحدات القياس الفيزيائية

طرائف الفيزياء

مواضيع اخرى

علم الفيزياء : الفيزياء الحديثة : الفيزياء الذرية :

ذرة الهيدروجين شبه الكلاسيكية

المؤلف:  فريدريك بوش ، دافيد جيرد

المصدر:  اساسيات الفيزياء

الجزء والصفحة:  ص 1041

10-7-2016

3476

ذرة الهيدروجين شبه الكلاسيكية

دعنا نفترض أن ذرة الهيدروجين مكونة من إلكترون كتلته m يدور في مدار حول النواة. (ولكي نتمكن فيما بعد من تطبيق هذه الحسابات على ذرات أخرى حيث Z > 1 فإننا سنعتبر الشحنة النووية مساوية Ze. وللهيدروجين Z = 1).

ونعلم جيداً أن للإلكترون خواص موجية وان طول دي برولي الموجي له هو   = h/mvλ على أن الإلكترون لن يتواجد في حالة مستقرة مال تكون موجة دي برولي له موجة موقوفة داخل المدار. ولكي يحدث هذا الرنين، لابد أن يكون طول المدار 2πr مساوياً لعدد صحيح من الأطوال الموجية.

وهناك مثال على رنين موجة دي برولي للإلكترون في مدار دائري ويوضحه الشكل 1)) ، الذي يبين مدار يساوي طوله أربعة أطوال موجية. وكلما التفت الموجة حول المدار مرات ومرات فإن قمة سوف تحدث فوق قمة وقاع فوق قاع ؛ وهذا هو شرط حدوث الحالة المستقرة والرنين. وعلى ذلك يكون شرط الرنين بالنسبة لمدار به عدد n طول موجي لدى برولي هو

(1)      

 

الشكل 1)): رنين موجات الإلكترون هو الذي يحدد المدارات المستقرة في النموذج شبه الكلاسيكي ولو أن طول المدار 2πr كان مساوياً لعدد صحيح من الأطوال الموجية فإن الموجة ستقوى نفسها عند عودتها إلى نقطة البداية A. وفي الحالة المبينة هنا 2πr = 4λ.

ويبين التحليل المفصل باستخدام الميكانيكا الموجية أن مدار الإلكترون الذي يحقق هذا الشرط للرنين لابد أن يكون مستقراً. والإلكترون في مثل هذا المدار لا يقوم بشكل متواصل بإشعاع الطاقة بالطريقة التي تفعلها شحنة نقطية تدور في مدار حسب النموذج الكلاسيكي. وحيث أن electron = h/mvλ فيمكننا أن نعيد كتابة المعادلة (1) على الصورة المناسبة ونحلها بحثاً عن كمية الزاوية ra mva لإلكترون في المدار رقم n:

(2)           

يلاحظ أن هذه المعادلة لكمية التحرك الزاوية هي نفس الشرط الذي وضعه بوهر لاختيار المدارات المستقرة، وإن كان لم يستطع تقدير تبرير فيزيائي له. ونرى الآن لماذا كان لابد من صحته: إنه شرط حدوث رنين لموجة الإلكترون داخل الذرة ولسوء الحظ فإن كلاً من va وra غير معلومة في المعادلة (2)، وعلينا إيجاد معادلة أخرى للوصول إلى هاتين الكميتين اللتين تمزان المدارات الإلكترونية وقد تلوى بوهر إيضاح كيفية عمل هذا.

يمكننا إيجاد معادلة ثانية إذا تنبهنا إلى أن قوى كولوم، الكلاسيكية، بين الإلكترون والنواة ذات الشحنة الموجية، هي التي توفر قوى الجذب المركزي التي تمسك بالإلكترون في مداره. فإذا اعتبرنا أن النواة الثقيلة ستظل ساكنة، لأمكننا كتابة ما يلي للإلكترون المتحرك في المدار.

قوة كولوم = قوة الجذب المركزي

(3)      

حيث ke هو ثابت قوة كولوم (ke = 8.99×109 N.m2/C2).

يمكننا الآن حل المعادلتين (2) و (3) آنياً لإيجاد سرعة الإلكترون va ونصف قطر مداره ra:

(4)    

حيث r1 هو نصف قطر أصغر مادر ممكن (n = 1)، ويعطى بالمعادلة

(5)              

وبالنسبة للهيدروجين Z = 1 و r1 = 0.53×10-10 m وهو يسمى نصف قطر بوهر، نظراً لأن بوهر تنبأ به بالنسبة لذرة هيدروجين غير مستثارة. وقد تنبأ بوهر أيضاً فيما بعد بالمدارات المستقرة والتي تعطى أنطاف أقطارها بالمعادلة (4) ويطلق عليها أيضاً مدارات بوهر. وقد أثبتت التجربة أن لذرات الهيدروجين غير المستثارة نصف القطر  0.053 nm بالفعل كما تنبأت به هذه النظرية. وسنعرف في القسمين التاليين كيف تفسر النظرية طيف الهيدروجين الانبعاثي المشاهد بالتجربة.

EN

تصفح الموقع بالشكل العمودي