المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الفيزياء
عدد المواضيع في هذا القسم 11580 موضوعاً
الفيزياء الكلاسيكية
الفيزياء الحديثة
الفيزياء والعلوم الأخرى
مواضيع عامة في الفيزياء

Untitled Document
أبحث عن شيء أخر
التجارة في الوطن العربي
2024-11-07
ما وإن ولا ولات المشبهات بليس
2024-11-07
تربية الماشية في إيطاليا
2024-11-07
التاريخ الحضاري للوطن العربي
2024-11-07
كان وأخواتها
2024-11-07
المبتدأ والخبر
2024-11-07

Amicable Triple
9-11-2020
أسئلة يوم القيامة
11-3-2016
نموذج "بورن" و"مادلنج" Born-Madelung model
6-2-2018
سيزيوم 134 cesium 134
15-4-2018
الأمراض المهنية
12-3-2020
جوس ، كارل فريدريك
4-11-2015

The Step Potential Function  
  
3173   01:18 مساءً   date: 9-5-2017
Author : Donald A. Neamen
Book or Source : Semiconductor Physics and Devices
Page and Part : p 38


Read More
Date: 22-5-2016 1946
Date: 22-3-2021 1666
Date: 25-3-2021 1677

The Step Potential Function

Consider now a step potential function as shown in Figure 1.1. In the previous section. we considered a particle being confined between two potential harriers. In this example, we will assume that a flux of particles is incident on the potential barrier. We will assume that the particles are traveling in the +x direction and that they originated at x = -∞. A particularly interesting result is obtained for the case when the total energy of the particle is less than the barrier height, or E < V0.

We again need to consider the time-independent wave equation in each of the two regions. This general equation was give as ∂2ѱ(x)/∂x2 + 2m/h2(E - V(x))ѱ(x) = 0. The wave equation in region I, in which V = 0, is

(1)

Figure 1.1 The step potential function.

The general solution to this equation can be written in the form

(2)

where the constant K1 is

(3)

The first term in Equation (2) is a traveling wave in the +x direction that represents the incident wave, and the second term is a traveling wave in the -x direction that represents a reflected wave. As in the case of a free particle, the incident and reflected particles are represented by traveling waves.

For the incident wave, A1 . A*1 is the probability density function of the incident panicles. If we multiply this probability density function by the incident velocity, then vi . A1 . A*1 is the flux of incident particles in units of #/cm2-s. Likewise, the quantity vr . B1 . B*1 is the flux of the reflected particles, where vr is the velocity of the reflected wave. (The parameters vi and vr in these terms are actually the magnitudes of the velocity only.)

In region II, the potential is V = V0. If we assume that E < V0, then the differential equation describing the wave function in region II can be written as

(4)

The general solution may then be written in the form

(5)

where

(6)

One boundary condition is that the wave function ѱ2(x) must remain finite, which means that the coefficient B2 = 0. The wave function is now given by

(7)

The wave function at x = 0 must be continuous so that

(8)

Then from Equations (2), (7) and (8), we obtain

(9)

Since the potential function is everywhere finite, the first derivative of the wave function must also be continuous so that

(10)

Using Equations (2), (7), and (10), we obtain

(11)

We can solve Equations (9) and (11) to determine the coefficients B1 and A2 in terms of the incident wave coefficient Al. The results are

(12a)

and

(12b)

The reflected probability density function is given by

(13)

We can define a reflection coefficient, R, as the ratio of the reflected flux to the incident flux, which is written as

(14)

where vi and vr are the incident and reflected velocities. respectively. of the particles. In region I, V = 0 so that E = T, where T is the kinetic energy of the particle. The kinetic energy is given by

(15)

so that the constant Kl, from Equation (3), may be written as

(16)

The incident velocity can then be written as

(17)

Since the reflected particle also exists in region I, the reflected velocity (magnitude) is given by

(18)

The incident and reflected velocities (magnitudes) are equal. The reflection coefficient is then

(19)

Substituting the expression from Equation (13) into Equation (19), we obtain

(20)

The result of R = 1 implies that all of the particles incident on the potential barrier for E < V0 are eventually reflected. Particles are not absorbed or transmitted through the potential barrier. This result is entirely consistent with classical physics and one might ask why we should consider this problem in terms of quantum mechanics. The interesting result is in terms of what happens in region II.

The wave solution in region II was given by Equation (7) as ѱ2(x) = A2e-K2x. The coefficient A2 from Equation (9) is A2 = A1 + B1 , which we derived from the boundary conditions. For the case of E < V0, the coefficient A2 is not zero. If A2 is not zero, then the probability density function ѱ2(x) . ѱ*2(x) of the particle being found in region II is not equal to zero. This result implies that there is a finite probability that the incident particle will penetrate the potential barrier and exist in region II. The probability of a particle penetrating the potential burrier is another difference between classical and quantum mechanics: The quantum mechanical penetration is classically not allowed. Although there is a finite probability that the particle may penetrate the barrier, since the reflection coefficient in region I is unity, the particle in region II must eventually turn around and move back into region I.




هو مجموعة نظريات فيزيائية ظهرت في القرن العشرين، الهدف منها تفسير عدة ظواهر تختص بالجسيمات والذرة ، وقد قامت هذه النظريات بدمج الخاصية الموجية بالخاصية الجسيمية، مكونة ما يعرف بازدواجية الموجة والجسيم. ونظرا لأهميّة الكم في بناء ميكانيكا الكم ، يعود سبب تسميتها ، وهو ما يعرف بأنه مصطلح فيزيائي ، استخدم لوصف الكمية الأصغر من الطاقة التي يمكن أن يتم تبادلها فيما بين الجسيمات.



جاءت تسمية كلمة ليزر LASER من الأحرف الأولى لفكرة عمل الليزر والمتمثلة في الجملة التالية: Light Amplification by Stimulated Emission of Radiation وتعني تضخيم الضوء Light Amplification بواسطة الانبعاث المحفز Stimulated Emission للإشعاع الكهرومغناطيسي.Radiation وقد تنبأ بوجود الليزر العالم البرت انشتاين في 1917 حيث وضع الأساس النظري لعملية الانبعاث المحفز .stimulated emission



الفيزياء النووية هي أحد أقسام علم الفيزياء الذي يهتم بدراسة نواة الذرة التي تحوي البروتونات والنيوترونات والترابط فيما بينهما, بالإضافة إلى تفسير وتصنيف خصائص النواة.يظن الكثير أن الفيزياء النووية ظهرت مع بداية الفيزياء الحديثة ولكن في الحقيقة أنها ظهرت منذ اكتشاف الذرة و لكنها بدأت تتضح أكثر مع بداية ظهور عصر الفيزياء الحديثة. أصبحت الفيزياء النووية في هذه الأيام ضرورة من ضروريات العالم المتطور.