Read More
Date: 19-8-2016
1072
Date: 21-8-2016
790
Date: 4-9-2016
814
|
Time-Dependent Harmonic Oscillator I
Consider a simple harmonic oscillator in one dimension:
(i)
At t = 0 the wave function is
(ii)
where ψn (x) is the exact eigenstate of the harmonic oscillator with eigenvalue hω(n+1/2).
a) Give Ψ(x, t) for t ≥ 0.
b) What is the parity of this state? Does it change with time?
c) What is the average value of the energy for this state? Does it change with time?
SOLUTION
a) At times t ≥ 0 the wave function is
(1)
b) The state Ψ(x, t) has even parity: it remains the same if one replaces x by –x, since ѱ2n(-x) = ѱ2n(x). This is true for all times.
c) The average value of the energy is
(2)
which is independent of time.
|
|
دراسة يابانية لتقليل مخاطر أمراض المواليد منخفضي الوزن
|
|
|
|
|
اكتشاف أكبر مرجان في العالم قبالة سواحل جزر سليمان
|
|
|
|
|
اتحاد كليات الطب الملكية البريطانية يشيد بالمستوى العلمي لطلبة جامعة العميد وبيئتها التعليمية
|
|
|