المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
آثار رعمسيس في أرمنت
2024-11-28
آثار رعمسيس السادس في طيبة
2024-11-28
تخزين البطاطس
2024-11-28
العيوب الفسيولوجية التي تصيب البطاطس
2024-11-28
العوامل الجوية المناسبة لزراعة البطاطس
2024-11-28
السيادة القمية Apical Dominance في البطاطس
2024-11-28


Johann(III) Bernoulli  
  
794   10:20 صباحاً   date: 27-3-2016
Author : J O Fleckenstein
Book or Source : Biography in Dictionary of Scientific Biography
Page and Part : ...


Read More
Date: 27-3-2016 763
Date: 27-3-2016 897
Date: 27-3-2016 1218

Born: 4 November 1744 in Basel, Switzerland
Died: 13 July 1807 in Berlin, Germany

 

Johann(III) Bernoulli was a son of Johann(II) Bernoulli. He was certainly considered a prodigy when a child with an encyclopedic knowledge and, like many other members of his extraordinarily talented family, he studied law and took an interest in mathematics.

At the early age of fourteen he graduated with the degree of master of law. He was appointed to a chair at Berlin Academy at the age of only 19. Frederick II asked him to revive the astronomical observatory of the Academy but this was not a task for which Johann(III) was particularly well suited. His health had never been particularly good and his qualities as an astronomical observer were relatively poor.

Johann(III) Bernoulli wrote a number of works on astronomy, reporting on astronomical observations and calculations, but these are of little importance. Strangely his most important contributions were the accounts of his travels in Germany which were to have a historical impact.

In the field of mathematics he worked on probability, recurring decimals and the theory of equations. As in his astronomical work there was little of lasting importance. He did, however, publish the Leipzig Journal for Pure and Applied Mathematics between 1776 and 1789.

He was well aware of the famous mathematical line from which he was descended and he looked after the wealth of mathematical writings that had passed between members of the family. He sold the letters to the Stockholm Academy where they remained forgotten about until 1877. At that time when these treasures were examined, 2800 letters written by Johann(III) Bernoulli himself were found in the collection.

 


  1. J O Fleckenstein, Biography in Dictionary of Scientific Biography (New York 1970-1990). 
    http://www.encyclopedia.com/doc/1G2-2830900409.html

Books:

  1. H Bernhard, The Bernoulli family, in H Wussing and W Arnold, Biographien bedeutender Mathematiker (Berlin, 1983).

Articles:

  1. M Hürlimann (ed.), Die Mathematikerfamilie Bernoulli, Grosse Schweizer (Zürich, 1942), 112-119.



الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.