المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
تـشكيـل اتـجاهات المـستـهلك والعوامـل المؤثـرة عليـها
2024-11-27
النـماذج النـظريـة لاتـجاهـات المـستـهلـك
2024-11-27
{اصبروا وصابروا ورابطوا }
2024-11-27
الله لا يضيع اجر عامل
2024-11-27
ذكر الله
2024-11-27
الاختبار في ذبل الأموال والأنفس
2024-11-27

مضاد المغناطيسية antimagnetic
14-11-2017
تـحليـل قيـمـة الـزبـون Customer Value Analysis
2024-09-19
POLYCARBONATES
24-9-2017
الآداب الإسلامية في جمع الضرائب‏
25-11-2015
المناهج المستخدمة في الجغرافيا السياحية - أسلوب تحليل المستوى
4-4-2022
كراهة المسلمين للحكم العباسي
10-8-2016

René Descartes  
  
1519   01:35 صباحاً   date: 15-1-2016
Author : W Arnold
Book or Source : Descartes, in H Wussing and W Arnold, Biographien bedeutender Mathematiker
Page and Part : ...


Read More
Date: 15-1-2016 1141
Date: 26-10-2015 931
Date: 26-10-2015 950

Born: 31 March 1596 in La Haye (now Descartes),Touraine, France
Died: 11 February 1650 in Stockholm, Sweden

 

René Descartes was a philosopher whose work, La géométrie, includes his application of algebra to geometry from which we now have Cartesian geometry.

Descartes was educated at the Jesuit college of La Flèche in Anjou. He entered the college at the age of eight years, just a few months after the opening of the college in January 1604. He studied there until 1612, studying classics, logic and traditional Aristotelian philosophy. He also learnt mathematics from the books of Clavius. While in the school his health was poor and he was granted permission to remain in bed until 11 o'clock in the morning, a custom he maintained until the year of his death.

School had made Descartes understand how little he knew, the only subject which was satisfactory in his eyes was mathematics. This idea became the foundation for his way of thinking, and was to form the basis for all his works.

Descartes spent a while in Paris, apparently keeping very much to himself, then he studied at the University of Poitiers. He received a law degree from Poitiers in 1616 then enlisted in the military school at Breda. In 1618 he started studying mathematics and mechanics under the Dutch scientist Isaac Beeckman, and began to seek a unified science of nature. After two years in Holland he travelled through Europe. Then in 1619 he joined the Bavarian army.

From 1620 to 1628 Descartes travelled through Europe, spending time in Bohemia (1620), Hungary (1621), Germany, Holland and France (1622-23). He spent time in 1623 in Paris where he made contact with Mersenne, an important contact which kept him in touch with the scientific world for many years. From Paris he travelled to Italy where he spent some time in Venice, then he returned to France again (1625).

By 1628 Descartes tired of the continual travelling and decided to settle down. He gave much thought to choosing a country suited to his nature and chose Holland. It was a good decision which he did not seem to regret over the next twenty years.

Soon after he settled in Holland Descartes began work on his first major treatise on physics, Le Monde, ou Traité de la Lumière. This work was near completion when news that Galileo was condemned to house arrest reached him. He, perhaps wisely, decided not to risk publication and the work was published, only in part, after his death. He explained later his change of direction saying:-

... in order to express my judgement more freely, without being called upon to assent to, or to refute the opinions of the learned, I resolved to leave all this world to them and to speak solely of what would happen in a new world, if God were now to create ... and allow her to act in accordance with the laws He had established.

In Holland Descartes had a number of scientific friends as well as continued contact with Mersenne. His friendship with Beeckman continued and he also had contact with Mydorge, Hortensius, Huygens and Frans van Schooten (the elder).

Descartes was pressed by his friends to publish his ideas and, although he was adamant in not publishing Le Monde, he wrote a treatise on science under the title Discours de la méthode pour bien conduire sa raison et chercher la vérité dans les sciences. Three appendices to this work were La Dioptrique, Les Météores, and La Géométrie. The treatise was published at Leiden in 1637 and Descartes wrote to Mersenne saying:-

I have tried in my "Dioptrique" and my "Météores" to show that my Méthode is better than the vulgar, and in my "Géométrie" to have demonstrated it.

The work describes what Descartes considers is a more satisfactory means of acquiring knowledge than that presented by Aristotle's logic. Only mathematics, Descartes feels, is certain, so all must be based on mathematics.

La Dioptrique is a work on optics and, although Descartes does not cite previous scientists for the ideas he puts forward, in fact there is little new. However his approach through experiment was an important contribution.

Les Météores is a work on meteorology and is important in being the first work which attempts to put the study of weather on a scientific basis. However many of Descartes' claims are not only wrong but could have easily been seen to be wrong if he had done some easy experiments. For example Roger Bacon had demonstrated the error in the commonly held belief that water which has been boiled freezes more quickly. However Descartes claims:-

... and we see by experience that water which has been kept on a fire for some time freezes more quickly than otherwise, the reason being that those of its parts which can be most easily folded and bent are driven off during the heating, leaving only those which are rigid.

Despite its many faults, the subject of meteorology was set on course after publication of Les Météores particularly through the work of Boyle, Hooke and Halley.

La Géométrie is by far the most important part of this work. In [17] Scott summarises the importance of this work in four points:-

  1. He makes the first step towards a theory of invariants, which at later stages derelativises the system of reference and removes arbitrariness.
  2. Algebra makes it possible to recognise the typical problems in geometry and to bring together problems which in geometrical dress would not appear to be related at all.
  3. Algebra imports into geometry the most natural principles of division and the most natural hierarchy of method.
  4. Not only can questions of solvability and geometrical possibility be decided elegantly, quickly and fully from the parallel algebra, without it they cannot be decided at all.


Some ideas in La Géométrie may have come from earlier work of Oresme but in Oresme's work there is no evidence of linking algebra and geometry. Wallis in Algebra (1685) strongly argues that the ideas of La Géométrie were copied from Harriot. Wallis writes:-

... the Praxis was read by Descartes, and every line of Descartes' analysis bears token of the impression.

There seems little to justify Wallis's claim, which was probably made partly through patriotism but also through his just desires to give Harriot more credit for his work. Harriot's work on equations, however, may indeed have influenced Descartes who always claimed, clearly falsely, that nothing in his work was influenced by the work of others.

Descartes' Meditations on First Philosophy, was published in 1641, designed for the philosopher and for the theologian. It consists of six meditations, Of the Things that we may doubt, Of the Nature of the Human Mind, Of God: that He exists, Of Truth and Error, Of the Essence of Material Things, Of the Existence of Material Things and of the Real Distinction between the Mind and the Body of Man. However many scientists were opposed to Descartes' ideas including Arnauld, Hobbes and Gassendi.

The most comprehensive of Descartes' works, Principia Philosophiae was published in Amsterdam in 1644. In four parts, The Principles of Human Knowledge, The Principles of Material Things, Of the Visible World and The Earth, it attempts to put the whole universe on a mathematical foundation reducing the study to one of mechanics.

This is an important point of view and was to point the way forward. Descartes did not believe in action at a distance. Therefore, given this, there could be no vacuum around the Earth otherwise there was no way that forces could be transferred. In many ways Descartes's theory, where forces work through contact, is more satisfactory than the mysterious effect of gravity acting at a distance.

However Descartes' mechanics leaves much to be desired. He assumes that the universe is filled with matter which, due to some initial motion, has settled down into a system of vortices which carry the sun, the stars, the planets and comets in their paths. Despite the problems with the vortex theory it was championed in France for nearly one hundred years even after Newton showed it was impossible as a dynamical system. As Brewster, one of Newton's 19th century biographers, puts it:-

Thus entrenched as the Cartesian system was ... it was not to be wondered at that the pure and sublime doctrines of the Principia were distrustfully received ... The uninstructed mind could not readily admit the idea that the great masses of the planets were suspended in empty space, and retained their orbits by an invisible influence...

Pleasing as Descartes's theory was even the supporters of his natural philosophy, such as the Cambridge metaphysical theologian Henry More, found objections. Certainly More admired Descartes, writing:-

I should look upon Des-Cartes as a man most truly inspired in the knowledge of Nature, than any that have professed themselves so these sixteen hundred years...

However between 1648 and 1649 they exchanged a number of letters in which More made some telling objections, Descartes however in his replies making no concessions to More's points. More went on to ask:-

Why are not your vortices in the form of columns or cylinders rather than ellipses, since any point of the axis of a vortex is as it were a centre from which the celestial matter recedes with, as far as I can see, a wholly constant impetus? ... Who causes all the planets not to revolve in one plane (the plane of the ecliptic)? ... And the Moon itself, neither in the plane of the Earth's equator nor in a plane parallel to this?

In 1644, the year his Meditations were published, Descartes visited France. He returned again in 1647, when he met Pascal and argued with him that a vacuum could not exist, and then again in 1648.

In 1649 Queen Christina of Sweden persuaded Descartes to go to Stockholm. However the Queen wanted to draw tangents at 5 a.m. and Descartes broke the habit of his lifetime of getting up at 11 o'clock. After only a few months in the cold northern climate, walking to the palace for 5 o'clock every morning, he died of pneumonia.


 

  1. M S Mahoney, Biography in Dictionary of Scientific Biography (New York 1970-1990). 
    http://www.encyclopedia.com/doc/1G2-2830901149.html
  2. Biography in Encyclopaedia Britannica. 
    http://www.britannica.com/eb/article-9108563/Rene-Descartes

Books:

  1. W Arnold, Descartes, in H Wussing and W Arnold, Biographien bedeutender Mathematiker (Berlin, 1983).
  2. Y Belaval, Leibniz critique de Descartes (Paris, 1960).
  3. D M Clarke, Descartes' Philosophy of Science (1982).
  4. R Dugas, De Descartes à Newton par l'école anglaise (Paris, 1953).
  5. S Gaukroger (ed.), Descartes: Philosophy, Mathematics, and Physics (1980).
  6. E S Haldane, Descartes: His Life and Times (1966).
  7. J E Hofmann, Geschichte der Mathematik. Teil I : Von den Anfängen bis zum Auftreten von Fermat und Descartes (Berlin, 1963).
  8. V Jullien, Descartes. La 'Géométrie' de 1637 (Paris, 1996).
  9. Ya Lyatker, Descartes (Spanish) (Moscow, 1990).
  10. H Montias, Descartes (French) (Paris, 1969).
  11. I Sp Papadatos, Arithmetic polygons of the ancient Greeks and arithmetic polyhedra of Descartes (Greek) (Athens, 1982).
  12. L Pearl, Descartes (1977).
  13. J Rée, Descartes (1974).
  14. G Rodis-Lewis (ed.), La Science chez Descartes (1987).
  15. J F Scott, The Scientific Work of René Descartes (1987).
  16. W R Shea, The Magic of Numbers and Motion: The Scientific Career of René Descartes (1991).
  17. T Sorell, Descartes. Past Masters (New York, 1987).
  18. J R Vrooman, René Descartes: A Biography (1970).
  19. J Vuillemin, Mathématiques et métaphysique chez Descartes (Paris, 1960).

Articles:

  1. E J Aiton, Descartes's theory of the tides, Ann. of Sci. 11 (1955), 337-348.
  2. L Alanen, On Descartes' argument for dualism and the distinction between different kinds of beings, in The logic of being (Dordrecht, 1986, 223-248.
  3. M Bartolozzi and R Franci, The rule of signs, from its statement by R Descartes (1637) to its proof by C F Gauss (1828) (Italian), Arch. Hist. Exact Sci. 45 (4) (1993), 335-374.
  4. A Lo Bello, Descartes and the philosophy of mathematics, The Mathematical Intelligencer 13 (1991), 35-39.
  5. J Bernhardt, La polémique de Hobbes contre la 'Dioptrique' de Descartes dans le 'Tractatus opticus II' (1644), Rev. Internat. Philos. 33 (3) (1979), 432-442.
  6. H J M Bos, Descartes, Pappus' problem and the Cartesian parabola : a conjecture, in The investigation of difficult things (Cambridge, 1992), 71-96.
  7. H J M Bos, On the representation of curves in Descartes' 'Géométrie', Arch. Hist. Exact Sci. 24 (4) (1981), 295-338.
  8. H J M Bos, Algebraization in Descartes' 'Géométrie' (French), in Symposium dedicated to A F Monna (Utrecht, 1980), 42-57.
  9. H J M Bos, Descartes and the beginning of analytic geometry (Dutch), in Summer course 1989 : mathematics in the Golden Age (Amsterdam, 1989), 79-97.
  10. J Bouveresse, La théorie du possible chez Descartes, Rev. Internat. Philos. 37 (3) (1983), 293-318.
  11. C B Boyer, Descartes and the geometrization of algebra, Amer. Math. Monthly 66 (1959), 390-393.
  12. C B Boyer, Fermat and Descartes, Scripta Math. 18 (1952), 189-217.
  13. H Breger, Über die Hannoversche Handschrift der Descartesschen 'Regulae', Studia Leibnitiana 15 (1) (1983), 108-114.
  14. H Burkhardt, Modalities in language, thought and reality in Leibniz, Descartes and Crusius, Synthese 75 (2) (1988), 183-215.
  15. R B Carter, Descartes' methodological transformation of 'Homo sapiens' into 'Homo faber', Sudhoffs Arch. 68 (2) (1984), 225-229.
  16. D M Clarke, Descartes' critique of logic, in Truth, knowledge and reality (Wiesbaden, 1981), 27-35.
  17. P Costabel, Descartes et la mathématique de l'infini, Historia Sci. 29 (1985), 37-49.
  18. P Costabel, Descartes et la racine cubique des nombres binômes, Rev. Histoire Sci. Appl. 22 (2) (1969), 97-116.
  19. A C Crombie, Expectation, modelling and assent in the history of optics. II. Kepler and Descartes, Stud. Hist. Philos. Sci. 22 (1) (1991), 89-115.
  20. K Devlin, Good-bye Descartes?, Math. Mag. 69 (5) (1996), 344-349.
  21. A V Dorofeeva, Descartes and his 'Geometry' (Russian), Mat. v Shkole (5) (1987), 51-53.
  22. F Duchesneau, The 'more geometrico' pattern in hypotheses from Descartes to Leibniz, in Nature mathematized I (Dordrecht-Boston, Mass., 1983), 197-214.
  23. B Eastwood, Stansfield Descartes on refraction : scientific versus rhetorical method, Isis 75 (278) (1984), 481-502.
  24. W Eisenberg, Theorienauffassungen in der Physikgeschichte. 17. Jahrhundert - zum Vergleich der Theorienauffassungen von R Descartes und C Huygens, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe 38 (1) (1989), 121-126.
  25. A Elzinga, Huygens' theory of research and Descartes' theory of knowledge. II, Z. Allgemeine Wissenschaftstheorie 3 (1) (1972), 9-27.
  26. A Elzinga, Huygens' theory of research and Descartes' theory of knowledge. I, Z. Allgemeine Wissenschaftstheorie 2 (2) (1971), 174-194.
  27. P J Federico, Descartes on polyhedra. A study of the 'De solidorum elementis', in Sources in the History of Mathematics and Physical Sciences 4 (New York-Berlin, 1982).
  28. J O Fleckenstein, Von Descartes zu Leibniz, Math.-Phys. Semesterber 11 (1964/1965), 129-143.
  29. E G Forbes, Descartes and the birth of analytic geometry, Historia Math. 4 (1977), 141-151.
  30. M Galuzzi, Recent intepretations of Descartes' 'Géométrie' (Italian), in Science and philosophy (Milan, 1985), 643-663.
  31. M Galuzzi, The problem of tangents in Descartes' 'Géométrie' (Italian), Arch. Hist. Exact Sci. 22 (1-2) (1980), 37-51.
  32. E Giusti, Le problème des tangents de Descartes à Leibniz, in 300 Jahre 'Nova methodus' von G W Leibniz (1684-1984) (Wiesbaden, 1986), 26-37.
  33. A Gloden, L'oeuvre mathématique de Descartes, 1596-1650, dans le cadre de la science de son époque et à la lumière des mathématiques modernes, Les Cahiers Luxembourgeois 27 (6) (1955), 243-250.
  34. J Grabiner, Descartes and problem-solving, Math. Mag. 68 (2) (1995), 83-97.
  35. E Grosholz, Descartes' 'Geometry' and the classical tradition, in Revolution and continuity (Washington, DC, 1991), 183-196.
  36. E Grosholz, Descartes and Galileo : the quantification of time and force, in Mathématiques et philosophie de l'antiquité à l'âge classique (Paris, 1991), 197-215.
  37. H-J Treder, Descartes' Physik der Hypothesen, Newtons Physik der Prinzipien und Leibnizens Physik der Prinzipe, Studia Leibnitiana 14 (2) (1982), 278-286.
  38. K Hara, Comment Descartes a-t-il découvert ses ovales?, Historia Sci. 29 (1985), 51-82.
  39. R T Harris, Mathematics, Descartes, and the rise of modernity, Philos. Math. (2) 3 (2) (1988), 1-20.
  40. P Hilton and J Pedersen, Descartes, Euler, Poincaré, Pólya - and polyhedra, Enseign. Math. (2) 27 (3-4) (1981), 327-343.
  41. L Indorato and P Nastasi, The 1740 resolution of the Fermat-Descartes controversy, Historia Math. 16 (2) (1989), 137-148.
  42. S A Janovskaja, On the role of mathematical rigor in the history of the creative development of mathematics and especially on the 'Geometry' of Descartes (Russian), in Studies in systems of logic (dedicated to the memory of S. A. Janovskaja) 'Nauka' (Moscow, 1970), 13-50.
  43. S A Janovskaja, On the role of mathematical rigor in the creative development of mathematics and especially on Descartes' 'Geometry' (Russian), Istor.-Mat. Issled. 17 (1966), 151-183.
  44. A Joja, Descartes et le modèle mathémathique, An. Univ. Bucuresti Acta Logica 14 (1971), 5-27.
  45. W B Joyce and A Joyce, Descartes, Newton, and Snell's law, J. Opt. Soc. Amer. 66 (1) (1976), 1-8.
  46. S Krämer, Uüber das Verhältnis von Algebra und Geometrie in Descartes' 'Géométrie', Philos. Natur. 26 (1) (1989), 19-40.
  47. A A Krishnaswami Ayyangar, Rene Descartes, Math. Student 8 (1940), 101-108.
  48. T M Lennon, The Leibnizean picture of Descartes, in Nature mathematized I (Dordrecht-Boston, Mass., 1983), 215-226.
  49. T Lenoir, Descartes and the geometrization of thought : the methodological background of Descartes' 'Géométrie', Historia Math. 6 (4) (1979), 355-379.
  50. R J Levene, Sources of confusion in Descartes's illustrations, with reference to the history of contact lenses, in History of science 6 (Cambridge, 1967), 90-96.
  51. F Le Lionnais, Descartes et Einstein, Rev. Hist. Sci. Appl. 5 (1952), 139-154.
  52. G Loeck, Descartes' logic of magnitudes, Dialectica 43 (4) (1989), 339-372.
  53. M Di Loreto, The 'Stockholm inventory' and 'First register' of Descartes : Marginal notes on the posthumous mathematical works (Italian), Nuncius Ann. Storia Sci. 10 (2) (1995), 551-615.
  54. A Malet, Gregorie, Descartes, Kepler, and the law of refraction, Arch. Internat. Hist. Sci. 40 (125) (1990), 278-304.
  55. P Mancosu, Descartes's 'Géométrie' and revolutions in mathematics, in Revolutions in mathematics (New York, 1992), 83-116.
  56. M Martinet, Science et hypothèses chez Descartes, Arch. Internat. Hist. Sci. 24 (95) (1974), 319-339.
  57. J E McGuire, Space, geometrical objects and infinity : Newton and Descartes on extension, in Nature mathematized I (Dordrecht-Boston, Mass., 1983), 69-112.
  58. R Meyer, René Descartes. Betrachtungen zum Verhältnis von Philosophie und Naturwissenschaften im 17. Jahrhundert, in Naturwissenschaftliche Revolution im 17. Jahrhundert (Berlin, 1989), 55-63.
  59. A G Molland, Shifting the foundations : Descartes's transformation of ancient geometry, Historia Math. 3 (1976), 21-49.
  60. R H Moorman, The influence of mathematics on the philosophy of Descartes, Nat. Math. Mag. 17 (1943), 296-307.
  61. C Müller, Descartes' 'Géométrie' und die Begründung der höheren Analysis, Sudhoffs Arch. 40 (1956), 240-258.
  62. A Nardi, Descartes 'presque' galiléen : 18 février 1643, Rev. Histoire Sci. 39 (1) (1986), 3-16.
  63. D V Nikulin, The argument over the nature of extent : Henry More and René Descartes (Russian), Voprosy Istor. Estestvoznan. i Tekhn. (4) (1989), 3-11.
  64. G Nonnoi, Against emptiness : Descartes's physics and metaphysics of plenitude, Stud. Hist. Philos. Sci. 25 (1) (1994), 81-96.
  65. G Restrepo Sierra, Descartes and modern science (Spanish), Lect. Mat. 13 (1-3) (1992), 25-51.
  66. G A J Rogers, Descartes and the method of English science, Ann. of Sci. 29 (1972), 237-255.
  67. B Russell, History of Western Philosophy (London, 1961), 542-551.
  68. S Sakellariadis, Descartes' experimental proof of the infinite velocity of light and Huygens' rejoinder, Arch. Hist. Exact Sci. 26 (1) (1982), 1-12.
  69. S Sakellariadis, Descartes's use of empirical data to test hypotheses, Isis 73 (266) (1982), 68-76.
  70. H Samelson, Descartes and differential geometry, in Geometry, topology, and physics (Cambridge, MA, 1995), 323-328.
  71. I Schneider, Die Rolle des Formalen und des Individuums in der Mathematik bei Descartes und Leibniz, Sudhoffs Arch. 58 (1974), 225-234.
  72. A E Shapiro, Light, pressure, and rectilinear propagation : Descartes' celestial optics and Newton's hydrostatics, Studies in Hist. and Philos. Sci. 5 (1974), 239-296.
  73. W R Shea, Descartes : methodological ideal and actual procedure, Philos. Natur. 21 (2-4) (1984), 577-589.
  74. P Slezak, Descartes's diagonal deduction, British J. Philos. Sci. 34 (1) (1983), 13-36.
  75. R C Taliaferro, The concept of matter in Descartes and Leibniz, Notre Dame Mathematical Lectures 9 (Notre Dame, Ind., 1964).
  76. M Tarina, La géométrie de Descartes en perspective historique, in The XVIIIth National Conference on Geometry and Topology (Cluj-Napoca, 1988), 207-208.
  77. D Tiemersma, Methodological and theoretical aspects of Descartes' treatise on the rainbow, Stud. Hist. Philos. Sci. 19 (3) (1988), 347-364.
  78. S Q Tong, Descartes' way of thinking about mathematics (Chinese), Qufu Shifan Daxue Xuebao Ziran Kexue Ban 20 (1) (1994), 89-95.
  79. J A van Ruler, Descartes' theory of vortices (Dutch), in Summer course 1996 : chaos (Amsterdam, 1996 ), 9-17.
  80. L Vekerdi, Descartes' method for drawing a tangent (Hungarian), Mat. Lapok 17 (1966), 165-179.
  81. L Vekerdi, The infinitesimal method of Descartes for computing the area of the cycloid (Hungarian), Mat. Lapok 15 (1964), 196-203.
  82. S A Voho, Ordre et mathématiques chez Descartes, in Mathématiques- philosophie et enseignement (Yamoussoukro, 1994), 55-59.
  83. P Weingartner, The ideal of the mathematization of all sciences and of 'more geometrico' in Descartes and Leibniz, in Nature mathematized I (Dordrecht-Boston, Mass., 1983), 151-195.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.