المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية

طبقة الثيرموسفير
20-3-2020
وظائف الإعلان- الوظائف التي يؤديها الإعلان للمستهلك
27-6-2022
The Einstein Relation
20-5-2017
شوكة صفراء صنارية Scolymus hispanicus
25-8-2019
تفسير شُبَّر (الكبير والوسيط والوجيز) : تفسير بالمأثور
15-10-2014
Kirchhoff’s first law
12-4-2021


نقطة حرجة Critical Point  
  
1187   02:18 صباحاً   التاريخ: 27-12-2015
المؤلف : صالح رشيد بطارسه
الكتاب أو المصدر : معجم الرياضيات
الجزء والصفحة : 369
القسم : الرياضيات / التفاضل و التكامل /


أقرأ أيضاً
التاريخ: 22-8-2019 1881
التاريخ: 17-9-2019 1416
التاريخ: 20-9-2019 1120
التاريخ: 19-5-2019 1892

هي النقطة (س1،ق(س1)) الواقعة في مجال الاقتران ق(س) والتي تكون عندها المشتقة الأولى ق-(س)=صفر  أو غير موجودة وغالباً ما تتواجد النقط الحرجة على أطراف الاقتران المحدود ورؤوس القطوع المخروطية المكافئة وأصفار اقتران القيمة المطلقة كون المشتقة الأولى هناك غير موجودة .

 

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.