المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر

اغتيال الامام الجواد (عليه السلام)
19-9-2017
صلاة المريض
2024-07-16
المتوسط الموزون لتكلفة رأس المال Weighted Arelage of Cost of Capital
2023-07-09
يا ذا الجلال والاكرام
16-7-2020
الأحاديث التي وردت في الحب في الله والبغض في الله
22-6-2022
{وباءوا بغضب من الله}
2024-08-08

Jordanus Nemorarius  
  
1435   01:20 صباحاً   date: 23-10-2015
Author : M Clagett
Book or Source : Archimedes in the Middle Ages
Page and Part : ...


Read More
Date: 25-10-2015 1457
Date: 22-10-2015 1424
Date: 23-10-2015 2126

Born: 1225 in Borgentreich (near Warburg), Germany
Died: 1260 in At sea

 

Jordanus Nemorarius is also called Jordanus de Nemore. He is someone who has been the subject of considerable research without any definite conclusions being reached about his life. Perhaps the most significant fact is a very negative one, namely that Jordanus de Nemore's name does not appear in any list of clerics so it is generally assumed that he was a layman. On the positive side we note that Richard de Fournival, who was Chancellor of the Cathedral of Amiens, made a list of works which were desirable for the Cathedral library in 1250 and four works by Jordanus appear.

There are two things which research has discovered which are controversial. One is a marginal note written on a manuscript which states:-

This is enough to say for the instruction of the students of Toulouse.

This was, for quite some time, thought to have been written by Jordanus so proving that he taught at Toulouse. However Thomson, in [14], discounts the manuscript as being written by Jordanus and in this case there is no reason to associate him with Toulouse.

The second controversy among scholars regarding Jordanus is whether Jordanus de Nemore and Jordanus de Saxonia are the same person. It is known that Jordanus de Saxonia was the first successor to Saint Dominic as the Grand Master of the Dominicans. Jordanus de Saxonia:-

... was renowned in Paris for his secular knowledge particularly in mathematics and, it is said, wrote two very useful books ...

This is fair evidence that the two Jordanus's are the same person but it is far from conclusive. Hughes (see for example [3]) does not believe that the two are the same.

What we do know of Jordanus is his works, many of which have survived. These show that he was someone of considerable importance in the development of mathematics and science. Hughes writes [3]:-

Jordanus de Nemore was, and is, recognised as one of the most prestigious natural philosophers of the thirteenth century. His activities encompassed the field of mathematical physics. In particular, he laid the foundation for the entire area of medieval statics. At a more elementary level, his mathematical works on arithmetic, both logistic and specious, and algebra were copied and printed many times, well into the sixteenth century.

Jordanus was the first to correctly formulate the law of the inclined plane. He wrote several books on arithmetic, algebra, geometry and astronomy. He also used letters to replace numbers and was able to state general algebraic theorems but this early use of algebraic notation was not used by subsequent writers. Let us look in more details at his mathematical work.

There are six mathematical treatises written by Jordanus. The Demonstratio de algorismo gives a practical explanation of the Arabic number system. It deals only with integers and their uses while, on the other hand, the text Demonstratio de minutiis deals with fractions. A theoretical work on arithmetic which became the standard source of Middle Ages texts is De elementis arithmeticae artis. Geometry is developed in the work Liber phylotegni de triangulis which is an excellent example of a Middle Ages Latin geometry text. The Demonstratio de plana spera is a specialised work on geometry which studiesstereographic projection. Perhaps the most impressive of all is the De numeris datis which is the first advanced algebra to be written in Europe after Diophantus. It [3]:-

... is recognised as the first advanced algebra composed in western Europe.

In De numeris datis Jordanus gives results on solving quadratic equations similar to those given by al-Khwarizmi except general forms are given rather than the numerical examples of the earlier text. The proofs given by Jordanus, like those of al-Khwarizmi, are by the method of completing the square. Let us give an example of one of the problems (using the translation given in [3]):-

If a given number is separated into two parts such that the product of the parts is known, then each of the parts can be found.

The solution illustrates the use of letters by Jordanus:-

Let the given number a be separated into x and y so that the product of x and y is given as b. Moreover, let the square of the sum of x and y be e, and the quadruple of b be f. Subtract this from e to get g, which will then be the square of the difference of x and y. Take the square root of g, call it h. Then h is also the difference of x and y. Since h is known, then x and y can be found.

What Jordanus has done, of course, is to use the fact that (x - y)2 = (x + y)2 - 4xy. After the general result he then gives a numerical example of the method he has just explained:-

The mechanics of this is easily done. For example, separate 10 into two numbers whose product is 21. The quadruple of this is 84, which subtracted from the square of 10, namely 100, yields 16. Now 4 is the root of this and also the difference of the two parts. Subtracting this from 10 to get 6, which halved yields 3, the lesser part; and the greater is 7.

In astronomy Jordanus used letters to denote the magnitudes of stars (not unrelated to his use of letters for algebraic notation). He wrote a treatise on mathematical astronomy called Planisphaerium as well as Tractatus de Sphaera. On statics he wrote De ratione ponderis which contains results such as:-

If the arms of a balance are proportional to the weights suspended, in such manner that the heavier weight is suspended from the shorter arm, the weights will have equal positional gravity.

We can compare this result on statics with a result from De numeris datis which illustrates a possible motivation for the algebraic results in the latter text:-

If the ratio of the two parts of a given number is known, then each of them can be found.

Jordanus visited the Holy Land and, on the return journey, he lost his life at sea.


 

  1. E Grant, Biography in Dictionary of Scientific Biography (New York 1970-1990). 
    http://www.encyclopedia.com/doc/1G2-2830902223.html

Books:

  1. H L L Busard, Jordanus de Nemore, 'De elementis arithmetice artis' : A medieval treatise on number theory. Parts I, II (Stuttgart, 1991).
  2. M Clagett, Archimedes in the Middle Ages (Madison, Wis., 1964).
  3. B B Hughes, Jordanus de Nemore, De numeris datis (Berkeley-Los Angeles-London, 1981).
  4. E A Moody and M Clagett (eds.), The medieval science of weights (Scientia de ponderibus), Treatises ascribed to Euclid, Archimedes, Thabit ibn Qurra, Jordanus de Nemore, and Blasius of Parma (Madison, Wis., 1952).

Articles:

  1. H L L Busard, The Arithmetica of Jordanus Nemorarius, in S S Demidov et al. (eds), Amphora : Festschrift for Hans Wussing on the occasion of his 65th birthday (Basel- Boston- Berlin, 1992), 121-132.
  2. H L L Busard, Die Traktate 'De Proportionibus' von Jordanus Nemorarius und Campanus, Centaurus 15 (3-4) (1970/71), 193-227.
  3. J Hoyrup, Jordanus de Nemore, 13th Century Mathematical Innovator, Archive for History of Exact Science 38 (1988), 307-363.
  4. J Hoyrup, Jordanus de Nemore : a case study on 13th century mathematical innovation and failure in cultural context, Philosophica 42 (2) (1988), 43-77.
  5. B Hughes, The arithmetical triangle of Jordanus de Nemore, Historia Math. 16 (3) (1989), 213-223.
  6. B B Hughes, Biographical information on Jordanus de Nemore to date, Janus 62 (1-3) (1975), 151-156.
  7. B B Hughes, Johann Scheubel's revision of Jordanus de Nemore's 'De numeris datis' : an analysis of an unpublished manuscript, Isis 63 (217) (1972), 221-234.
  8. M R McVaugh, The two faces of a medical career : Jordanus de Turre of Montpellier, in Mathematics and its applications to science and natural philosophy in the Middle Ages (Cambridge, 1987), 301-324.
  9. L Puig, The 'De numeris datis' of Jordanus Nemorarius as a mathematical system of signs (Spanish), Mathesis 10 (1) (1994), 47-92.
  10. R B Thomson, Jordanus de Nemore and the University of Toulouse, British J. Hist. Sci. 7 (26) (1974), 163-165.
  11. R B Thomson, Jordanus de Nemore : Opera, Mediaeval Studies 36 (1976), 97-144.
  12. R B Thomson, Jordanus de Nemore and the mathematics of astrolabes (Toronto, 1978), 1-17.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.