Read More
Date: 20-1-2022
795
Date: 23-1-2022
857
Date: 22-1-2022
690
|
Consider a first-order logic formula in Skolemized form
Then the Herbrand universe of is defined by the following rules.
1. All constants from belong to . If there are no constants in , then contains an arbitrary constant .
2. If , and an -place function occurs in , then .
The clauses (disjunctions of literals) obtained from those of by replacing all variables by elements of the Herbrand universe are called ground clauses, with similar definitions for a ground literal and ground atom. The set of all ground atoms that can be formed from predicate symbols from and terms from is called the Herbrand base.
Consecutive generation of elements of the Herbrand universe and verification of unsatisfiability of generated elements can be straightforwardly implemented in a computer program. Given the completeness of first-order logic, this program is basically a tool for automated theorem proving. Of course, this exhaustive search is too slow for practical applications.
This program will terminate on all unsatisfiable formulas and will not terminate on satisfiable formulas, which basically shows that the set of unsatisfiable formulas is recursively enumerable. Since provability (or equivalently unsatisfiability) in first-order logic is recursively undecidable, this set is not recursive.
Chang, C.-L. and Lee, R. C.-T. Symbolic Logic and Mechanical Theorem Proving. New York: Academic Press, 1997.
Kleene, S. C. Mathematical Logic. New York: Dover, 2002.
|
|
مخاطر عدم علاج ارتفاع ضغط الدم
|
|
|
|
|
اختراق جديد في علاج سرطان البروستات العدواني
|
|
|
|
|
مدرسة دار العلم.. صرح علميّ متميز في كربلاء لنشر علوم أهل البيت (عليهم السلام)
|
|
|