المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
النقل البحري
2024-11-06
النظام الإقليمي العربي
2024-11-06
تربية الماشية في جمهورية كوريا الشعبية الديمقراطية
2024-11-06
تقييم الموارد المائية في الوطن العربي
2024-11-06
تقسيم الامطار في الوطن العربي
2024-11-06
تربية الماشية في الهند
2024-11-06

الأعمال التجارية بالتبعیة في القانون المصري
1-5-2017
تعريف التفسير الإشاري
16-10-2014
معالجة عملية إضافة المواد الخام للإنتاج في المراحل ( حالة إضافة صنف واحد من المواد الخام)
2024-02-06
شائعة الخوف
25-11-2019
Osmotic Downshift
18-6-2019
Molar Concentration
19-4-2017

Gauss,s Forward Formula  
  
1031   04:05 مساءً   date: 28-11-2021
Author : Beyer, W. H
Book or Source : CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press
Page and Part : ...


Read More
Date: 28-9-2021 1001
Date: 19-10-2021 1035
Date: 1-12-2021 2342

Gauss's Forward Formula

Gauss's forward formula is

 f_p=f_0+pdelta_(1/2)+G_2delta_0^2+G_3delta_(1/2)^3+G_4delta_0^4+G_5delta_(1/2)^5+...,

(1)

for p in [0,1], where delta is the central difference and

G_(2n) = (p+n-1; 2n)

(2)

G_(2n+1) = (p+n; 2n+1),

(3)

where (n; k) is a binomial coefficient.


REFERENCES:

Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 433, 1987.

Whittaker, E. T. and Robinson, G. "The Newton-Gauss Formula for Interpolation." §21 in The Calculus of Observations: A Treatise on Numerical Mathematics, 4th ed. New York: Dover, pp. 36-37, 1967.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.