Read More
Date: 16-12-2021
![]()
Date: 24-9-2021
![]()
Date: 1-12-2021
![]() |
Let be an
th degree polynomial with zeros at
, ...,
. Then the fundamental Hermite interpolating polynomials of the first and second kinds are defined by
![]() |
(1) |
and
![]() |
(2) |
for , 2, ...
, where the fundamental polynomials of Lagrange interpolation are defined by
![]() |
(3) |
They are denoted and
, respectively, by Szegö (1975, p. 330).
These polynomials have the properties
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
for , 2, ...,
. Now let
, ...,
and
, ...,
be values. Then the expansion
![]() |
(8) |
gives the unique Hermite interpolating fundamental polynomial for which
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
![]() |
(10) |
If , these are called Hermite's interpolating polynomials.
The fundamental polynomials satisfy
![]() |
(11) |
and
![]() |
(12) |
Also, if is an arbitrary distribution on the interval
, then
![]() |
![]() |
![]() |
(13) |
![]() |
![]() |
![]() |
(14) |
![]() |
![]() |
![]() |
(15) |
![]() |
![]() |
![]() |
(16) |
![]() |
![]() |
![]() |
(17) |
![]() |
![]() |
![]() |
(18) |
where are Christoffel numbers.
REFERENCES:
Bartels, R. H.; Beatty, J. C.; and Barsky, B. A. "Hermite and Cubic Spline Interpolation." Ch. 3 in An Introduction to Splines for Use in Computer Graphics and Geometric Modelling. San Francisco, CA: Morgan Kaufmann, pp. 9-17, 1998.
Hildebrand, F. B. Introduction to Numerical Analysis. New York: McGraw-Hill, pp. 314-319, 1956.
Szegö, G. Orthogonal Polynomials, 4th ed. Providence, RI: Amer. Math. Soc., pp. 330-332, 1975.ش
|
|
منها نحت القوام.. ازدياد إقبال الرجال على عمليات التجميل
|
|
|
|
|
دراسة: الذكاء الاصطناعي يتفوق على البشر في مراقبة القلب
|
|
|
|
|
هيئة الصحة والتعليم الطبي في العتبة الحسينية تحقق تقدما بارزا في تدريب الكوادر الطبية في العراق
|
|
|