Read More
Date: 13-9-2021
1250
Date: 16-2-2016
1485
Date: 22-12-2021
1969
|
Let be an th degree polynomial with zeros at , ..., . Then the fundamental Hermite interpolating polynomials of the first and second kinds are defined by
(1) |
and
(2) |
for , 2, ..., where the fundamental polynomials of Lagrange interpolation are defined by
(3) |
They are denoted and , respectively, by Szegö (1975, p. 330).
These polynomials have the properties
(4) |
|||
(5) |
|||
(6) |
|||
(7) |
for , 2, ..., . Now let , ..., and , ..., be values. Then the expansion
(8) |
gives the unique Hermite interpolating fundamental polynomial for which
(9) |
|||
(10) |
If , these are called Hermite's interpolating polynomials.
The fundamental polynomials satisfy
(11) |
and
(12) |
Also, if is an arbitrary distribution on the interval , then
(13) |
|||
(14) |
|||
(15) |
|||
(16) |
|||
(17) |
|||
(18) |
where are Christoffel numbers.
REFERENCES:
Bartels, R. H.; Beatty, J. C.; and Barsky, B. A. "Hermite and Cubic Spline Interpolation." Ch. 3 in An Introduction to Splines for Use in Computer Graphics and Geometric Modelling. San Francisco, CA: Morgan Kaufmann, pp. 9-17, 1998.
Hildebrand, F. B. Introduction to Numerical Analysis. New York: McGraw-Hill, pp. 314-319, 1956.
Szegö, G. Orthogonal Polynomials, 4th ed. Providence, RI: Amer. Math. Soc., pp. 330-332, 1975.ش
|
|
دراسة يابانية لتقليل مخاطر أمراض المواليد منخفضي الوزن
|
|
|
|
|
اكتشاف أكبر مرجان في العالم قبالة سواحل جزر سليمان
|
|
|
|
|
اتحاد كليات الطب الملكية البريطانية يشيد بالمستوى العلمي لطلبة جامعة العميد وبيئتها التعليمية
|
|
|