Read More
Date: 24-9-2021
837
Date: 16-11-2021
944
Date: 22-8-2021
1318
|
An invariant set is said to be a () invariant manifold if has the structure of a differentiable manifold (Wiggins 1990, p. 14).
When stable and unstable invariant manifolds intersect, they do so in a hyperbolic fixed point (saddle point). The invariant manifolds are then called separatrices. A hyperbolic fixed point is characterized by two ingoing stable manifolds and two outgoing unstable manifolds. In integrable systems, incoming and outgoing manifolds join up smoothly.
REFERENCES:
Rasband, S. N. "Invariant Manifolds." §5.2 in Chaotic Dynamics of Nonlinear Systems. New York: Wiley, pp. 89-92, 1990.
Wiggins, S. "Invariant Manifolds: Linear and Nonlinear Systems." §1.1C in Introduction to Applied Nonlinear Dynamical Systems and Chaos. New York: Springer-Verlag, pp. 14-25, 1990.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مدرسة دار العلم.. صرح علميّ متميز في كربلاء لنشر علوم أهل البيت (عليهم السلام)
|
|
|