Read More
Date: 19-11-2021
![]()
Date: 19-9-2021
![]()
Date: 1-12-2021
![]() |
An invariant set is said to be a
(
) invariant manifold if
has the structure of a
differentiable manifold (Wiggins 1990, p. 14).
When stable and unstable invariant manifolds intersect, they do so in a hyperbolic fixed point (saddle point). The invariant manifolds are then called separatrices. A hyperbolic fixed point is characterized by two ingoing stable manifolds and two outgoing unstable manifolds. In integrable systems, incoming and outgoing
manifolds join up smoothly.
REFERENCES:
Rasband, S. N. "Invariant Manifolds." §5.2 in Chaotic Dynamics of Nonlinear Systems. New York: Wiley, pp. 89-92, 1990.
Wiggins, S. "Invariant Manifolds: Linear and Nonlinear Systems." §1.1C in Introduction to Applied Nonlinear Dynamical Systems and Chaos. New York: Springer-Verlag, pp. 14-25, 1990.
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
نحو شراكة وطنية متكاملة.. الأمين العام للعتبة الحسينية يبحث مع وكيل وزارة الخارجية آفاق التعاون المؤسسي
|
|
|