Read More
Date: 13-10-2021
![]()
Date: 19-12-2021
![]()
Date: 7-10-2021
![]() |
![]() |
(1) |
where
![]() |
(2) |
is the box size, and
is the natural measure.
The capacity dimension (a.k.a. box-counting dimension) is given by ,
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
If all s are equal, then the capacity dimension is obtained for any
.
The information dimension corresponds to and is given by
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
But for the numerator,
![]() |
(8) |
and for the denominator, , so use l'Hospital's rule to obtain
![]() |
(9) |
Therefore,
![]() |
(10) |
(Ott 1993, p. 79).
is called the correlation dimension.
If , then
![]() |
(11) |
(Ott 1993, p. 79).
REFERENCES:
Grassberger, P. "Generalized Dimensions of Strange Attractors." Phys. Lett. A 97, 227, 1983.
Hentschel, H. G. E. and Procaccia, I. "The Infinite Number of Generalized Dimensions of Fractals and Strange Attractors." Physica D 8, 435, 1983.
Ott, E. "Measure and the Spectrum of Dimensions." §3.3 in Chaos in Dynamical Systems. New York: Cambridge University Press, pp. 78-81, 1993.
Rényi, A. Probability Theory. Amsterdam, Netherlands: North-Holland, 1970.
|
|
لخفض ضغط الدم.. دراسة تحدد "تمارين مهمة"
|
|
|
|
|
طال انتظارها.. ميزة جديدة من "واتساب" تعزز الخصوصية
|
|
|
|
|
مشاتل الكفيل تزيّن مجمّع أبي الفضل العبّاس (عليه السلام) بالورد استعدادًا لحفل التخرج المركزي
|
|
|