A Kähler metric is a Riemannian metric on a complex manifold which gives a Kähler structure, i.e., it is a Kähler manifold with a Kähler form. However, the term "Kähler metric" can also refer to the corresponding Hermitian metric , where is the Kähler form, defined by . Here, the operator is the almost complex structure, a linear map on tangent vectors satisfying , induced by multiplication by . In coordinates , the operator satisfies and .
The operator depends on the complex structure, and on a Kähler manifold, it must preserve the Kähler metric. For a metric to be Kähler, one additional condition must also be satisfied, namely that it can be expressed in terms of the metric and the complex structure. Near any point , there exists holomorphic coordinates such that the metric has the form
where denotes the vector space tensor product; that is, it vanishes up to order two at . Hence, any geometric equation in involving only the first derivatives can be defined on a Kähler manifold. Note that a generic metric can be written to vanish up to order two, but not necessarily in holomorphic coordinates, using a Gaussian coordinate system.
|
|
مخاطر عدم علاج ارتفاع ضغط الدم
|
|
|
|
|
اختراق جديد في علاج سرطان البروستات العدواني
|
|
|
|
|
مدرسة دار العلم.. صرح علميّ متميز في كربلاء لنشر علوم أهل البيت (عليهم السلام)
|
|
|