Read More
Date: 17-6-2021
![]()
Date: 17-6-2021
![]()
Date: 29-5-2021
![]() |
A Kähler metric is a Riemannian metric on a complex manifold which gives
a Kähler structure, i.e., it is a Kähler manifold with a Kähler form. However, the term "Kähler metric" can also refer to the corresponding Hermitian metric
, where
is the Kähler form, defined by
. Here, the operator
is the almost complex structure, a linear map on tangent vectors satisfying
, induced by multiplication by
. In coordinates
, the operator
satisfies
and
.
The operator depends on the complex structure, and on a Kähler manifold, it must preserve the Kähler metric. For a metric to be Kähler, one additional condition must also be satisfied, namely that it can be expressed in terms of the metric and the complex structure. Near any point
, there exists holomorphic coordinates
such that the metric has the form
![]() |
where denotes the vector space tensor product; that is, it vanishes up to order two at
. Hence, any geometric equation in
involving only the first derivatives can be defined on a Kähler manifold. Note that a generic metric can be written to vanish up to order two, but not necessarily in holomorphic coordinates, using a Gaussian coordinate system.
|
|
دخلت غرفة فنسيت ماذا تريد من داخلها.. خبير يفسر الحالة
|
|
|
|
|
ثورة طبية.. ابتكار أصغر جهاز لتنظيم ضربات القلب في العالم
|
|
|
|
|
سماحة السيد الصافي يؤكد ضرورة تعريف المجتمعات بأهمية مبادئ أهل البيت (عليهم السلام) في إيجاد حلول للمشاكل الاجتماعية
|
|
|